• Ajayamohan, R. S., B. Khouider, V. Praveen, and A. J. Majda, 2021: Role of diurnal cycle in the Maritime Continent barrier effect on MJO propagation in an AGCM. J. Atmos. Sci., 78, 15451565, https://doi.org/10.1175/JAS-D-20-0112.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, H., and C. Schumacher, 2022: Topographic influences on diurnally driven MJO rainfall over the Maritime Continent. J. Geophys. Res. Atmos., 127, e2021JD035905, https://doi.org/10.1029/2021JD035905.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bai, H., and Coauthors, 2021: Formation of nocturnal offshore rainfall near the west coast of Sumatra: Land breeze or gravity wave? Mon. Wea. Rev., 149, 715731, https://doi.org/10.1175/MWR-D-20-0179.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barrett, B. S., C. R. Densmore, P. Ray, and E. R. Sanabia, 2021: Active and weakening MJO events in the Maritime Continent. Climate Dyn., 57, 157172, https://doi.org/10.1007/s00382-021-05699-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2008: Gravity currents in a deep anelastic atmosphere. J. Atmos. Sci., 65, 536556, https://doi.org/10.1175/2007JAS2443.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and M. Curcic, 2016: Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Modell., 103, 161176, https://doi.org/10.1016/j.ocemod.2015.08.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppin, D., and G. Bellon, 2019: Physical mechanisms controlling the offshore propagation of convection in the tropics: 1. Flat island. J. Adv. Model. Earth Syst., 11, 30423056, https://doi.org/10.1029/2019MS001793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., 2005: Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc., 131, 35833604, https://doi.org/10.1256/qj.05.105.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummings, J. A., and O. M. Smedstad, 2013: Variational data assimilation for the global ocean. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, Springer, 303343, https://doi.org/10.1007/978-3-642-35088-7_13.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2002a: Lee-vortex formation in free-slip stratified flow over ridges. Part I: Comparison of weakly nonlinear inviscid theory and fully nonlinear viscous simulations. J. Atmos. Sci., 59, 11531165, https://doi.org/10.1175/1520-0469(2002)059<1153:LVFIFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Epifanio, C. C., and D. R. Durran, 2002b: Lee-vortex formation in free-slip stratified flow over ridges. Part II: Mechanisms of vorticity and PV production in nonlinear viscous wakes. J. Atmos. Sci., 59, 11661181, https://doi.org/10.1175/1520-0469(2002)059<1166:LVFIFS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, J., T. Li, and W. Zhu, 2015: Propagating and nonpropagating MJO events over Maritime Continent. J. Climate, 28, 84308449, https://doi.org/10.1175/JCLI-D-15-0085.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Houze, R. A., Jr., S. G. Geotis, F. D. Marks, and A. K. West, 1981: Winter monsoon convection in the vicinity of north Borneo. Part I: Structure and time variation of the clouds and precipitation. Mon. Wea. Rev., 109, 15951614, https://doi.org/10.1175/1520-0493(1981)109<1595:WMCITV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., D. T. Bolvin, and E. J. Nelkin, 2015: Integrated Multi‐satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 612 Tech. Doc., 48 pp., http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc.pdf.

    • Search Google Scholar
    • Export Citation
  • Hung, C.-S., and C.-H. Sui, 2018: A diagnostic study of the evolution of the MJO from Indian Ocean to Maritime Continent: Wave dynamics versus advective moistening processes. J. Climate, 31, 40954115, https://doi.org/10.1175/JCLI-D-17-0139.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2006: Time–space characteristics of diurnal rainfall over Borneo and surrounding oceans as observed by TRMM-PR. J. Climate, 19, 12381260, https://doi.org/10.1175/JCLI3714.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiang, X., H. Su, and D. E. Waliser, 2019: A damping effect of the Maritime Continent for the Madden-Julian oscillation. J. Geophys. Res. Atmos., 124, 13 69313 713, https://doi.org/10.1029/2019JD031503.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanamori, H., T. Yasunari, and K. Kuraji, 2013: Modulation of the diurnal cycle of rainfall associated with the MJO observed by a dense hourly rain gauge network at Sarawak, Borneo. J. Climate, 26, 48584875, https://doi.org/10.1175/JCLI-D-12-00158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerns, B. W., and S. S. Chen, 2020: A 20‐year climatology of Madden‐Julian oscillation convection: Large‐scale precipitation tracking from TRMM‐GPM rainfall. J. Geophys. Res. Atmos., 125, e2019JD032142, https://doi.org/10.1029/2019JD032142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., J. Dias, K. H. Straub, M. C. Wheeler, S. N. Tulich, K. Kikuchi, K. M. Weickmann, and M. J. Ventrice, 2014: A comparison of OLR and circulation-based indices for tracking the MJO. Mon. Wea. Rev., 142, 16971715, https://doi.org/10.1175/MWR-D-13-00301.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, K., J. Park, J. Baik, and M. Choi, 2017: Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia. Atmos. Res., 187, 95105, https://doi.org/10.1016/j.atmosres.2016.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D., B. Adler, N. Kalthoff, C. Barthlott, and S. Serafin, 2018: Moist orographic convection: Physical mechanisms and links to surface-exchange processes. Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, https://doi.org/10.1029/94RG01872.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, H.-T., 2011: NOAA Climate Data Record (CDR) of daily outgoing longwave radiation (OLR), version 1.2. NCEI, accessed 4 April 2021, https://doi.org/10.7289/v5sj1hh2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2015: Offshore propagation of coastal precipitation. J. Atmos. Sci., 72, 45534568, https://doi.org/10.1175/JAS-D-15-0104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, R. Joyce, P.-P. Xie, and G. Chen, 2019: Possible role of the diurnal cycle in land convection in the barrier effect on the MJO by the Maritime Continent. Geophys. Res. Lett., 46, 30013011, https://doi.org/10.1029/2019GL081962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Love, B. S., A. J. Matthews, and G. M. S. Lister, 2011: The diurnal cycle of precipitation over the Maritime Continent in a high-resolution atmospheric model. Quart. J. Roy. Meteor. Soc., 137, 934947, https://doi.org/10.1002/qj.809.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123, https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and Q. Yang, 2016: A multiscale model for the intraseasonal impact of the diurnal cycle over the Maritime Continent on the Madden–Julian oscillation. J. Atmos. Sci., 73, 579604, https://doi.org/10.1175/JAS-D-15-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, S., and Coauthors, 2004: Diurnal land–sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings. Mon. Wea. Rev., 132, 20212039, https://doi.org/10.1175/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848, https://doi.org/10.1175/1520-0442(2003)016<0834:TMCAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, https://doi.org/10.1175/1520-0442-16.10.1456.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, https://doi.org/10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Oh, J.-H., K.-Y. Kim, and G.-H. Lim, 2012: Impact of MJO on the diurnal cycle of rainfall over the western Maritime Continent in the austral summer. Climate Dyn., 38, 11671180, https://doi.org/10.1007/s00382-011-1237-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peatman, S. C., A. J. Matthews, and D. P. Stevens, 2014: Propagation of the Madden-Julian oscillation through the Maritime Continent and scale interaction with the diurnal cycle of precipitation. Quart. J. Roy. Meteor. Soc., 140, 814825, https://doi.org/10.1002/qj.2161.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2008: Why precipitation is mostly concentrated over islands in the Maritime Continent. J. Atmos. Sci., 65, 14281441, https://doi.org/10.1175/2007JAS2422.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., 2020: Mechanisms for the dipolar patterns of rainfall variability over large islands in the Maritime Continent associated with the Madden–Julian oscillation. J. Atmos. Sci., 77, 22572278, https://doi.org/10.1175/JAS-D-19-0091.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., A. W. Robertson, and V. Moron, 2013: Diurnal cycle in different weather regimes and rainfall variability over Borneo associated with ENSO. J. Climate, 26, 17721790, https://doi.org/10.1175/JCLI-D-12-00178.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramage, C. S., 1968: Role of a tropical “Maritime Continent” in the atmospheric circulation. Mon. Wea. Rev., 96, 365370, https://doi.org/10.1175/1520-0493(1968)096<0365:ROATMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rauniyar, S. P., and K. J. E. Walsh, 2011: Scale interaction of the diurnal cycle of rainfall over the Maritime Continent and Australia: Influence of the MJO. J. Climate, 24, 325348, https://doi.org/10.1175/2010JCLI3673.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117133, https://doi.org/10.1175/1520-0469(1994)051<0117:TFLFNF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley Dellaripa, E. M., E. D. Maloney, B. A. Toms, S. M. Saleeby, and S. C. van den Heever, 2020: Topographic effects on the Luzon diurnal cycle during the BSISO. J. Atmos. Sci., 77, 330, https://doi.org/10.1175/JAS-D-19-0046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and X. Chen, 2020: Island rainfall enhancement in the Maritime Continent. Geophys. Res. Lett., 47, e2019GL086545, https://doi.org/10.1029/2019GL086545.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., X. Chen, and F. Zhang, 2020: Convectively forced diurnal gravity waves in the Maritime Continent. J. Atmos. Sci., 77, 11191136, https://doi.org/10.1175/JAS-D-19-0236.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, https://doi.org/10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Short, E., C. L. Vincent, and T. P. Lane, 2019: Diurnal cycle of surface winds in the Maritime Continent observed through satellite scatterometry. Mon. Wea. Rev., 147, 20232044, https://doi.org/10.1175/MWR-D-18-0433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, https://doi.org/10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smolarkiewicz, P. K., R. M. Rasmussen, and T. L. Clark, 1988: On the dynamics of Hawaiian cloud bands: Island forcing. J. Atmos. Sci., 45, 18721905, https://doi.org/10.1175/1520-0469(1988)045<1872:OTDOHC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, H., P. Ray, B. S. Barrett, M. Tewari, and M. W. Moncrieff, 2020: Role of topography on the MJO in the Maritime Continent: A numerical case study. Climate Dyn., 55, 295314, https://doi.org/10.1007/s00382-018-4275-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tan, H., P. Ray, B. S. Barrett, J. Dudhia, and M. W. Moncrieff, 2021: Systematic patterns in land precipitation due to convection in neighboring islands in the Maritime Continent during MJO propagation. J. Geophys. Res. Atmos., 126, e2020JD033465, https://doi.org/10.1029/2020JD033465.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2016: Evolution of the diurnal precipitation cycle with the passage of a Madden–Julian oscillation event through the Maritime Continent. Mon. Wea. Rev., 144, 19832005, https://doi.org/10.1175/MWR-D-15-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vincent, C. L., and T. P. Lane, 2017: A 10-year austral summer climatology of observed and modeled intraseasonal, mesoscale, and diurnal variations over the Maritime Continent. J. Climate, 30, 38073828, https://doi.org/10.1175/JCLI-D-16-0688.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software design description for the Hybrid Coordinate Ocean Model (HYCOM) version 2.2. NRL Tech. Rep. NRL/MR/732009-9166, 155 pp., https://www.hycom.org/attachments/063_metzger1-2009.pdf.

    • Search Google Scholar
    • Export Citation
  • Wang, B., G. Chen, and F. Liu, 2019: Diversity of the Madden-Julian oscillation. Sci. Adv., 5, eaax0220, https://doi.org/10.1126/sciadv.aax0220.

  • Wang, S., and A. H. Sobel, 2017: Factors controlling rain on small tropical islands: Diurnal cycle, large-scale wind speed, and topography. J. Atmos. Sci., 74, 35153532, https://doi.org/10.1175/JAS-D-16-0344.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, F. Zhang, Y. Q. Sun, Y. Yue, and L. Zhou, 2015: Regional simulation of the October and November MJO events observed during the CINDY/DYNAMO field campaign at gray zone resolution. J. Climate, 28, 20972119, https://doi.org/10.1175/JCLI-D-14-00294.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, S., A. H. Sobel, C. Lee, D. Ma, S. Chen, M. Curcic, and J. Pullen, 2021: Propagating mechanisms of the 2016 summer BSISO event: Air‐sea coupling, vorticity, and moisture. J. Geophys. Res. Atmos., 126, e2020JD033284, https://doi.org/10.1029/2020JD033284.

    • Search Google Scholar
    • Export Citation
  • Wei, Y., and Z. Pu, 2022: Diurnal cycle of precipitation and near-surface atmospheric conditions over the Maritime Continent: Land–sea contrast and impacts of ambient winds in cloud-permitting simulations. Climate Dyn., 58, 24212449, https://doi.org/10.1007/s00382-021-06012-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wei, Y., Z. Pu, and C. Zhang, 2020: Diurnal cycle of precipitation over the Maritime Continent under modulation of MJO: Perspectives from cloud‐permitting scale simulations. J. Geophys. Res. Atmos., 125, e2020jd032529, https://doi.org/10.1029/2020JD032529.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yamanaka, M. D., S.-Y. Ogino, P.-M. Wu, H. Jun-Ichi, S. Mori, J. Matsumoto, and F. Syamsudin, 2018: Maritime Continent coastlines controlling Earth’s climate. Prog. Earth Planet. Sci., 5, 21, https://doi.org/10.1186/s40645-018-0174-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, https://doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and C. Zhang, 2020: Years of the Maritime Continent. Geophys. Res. Lett., 47, e2020GL087182, https://doi.org/10.1029/2020GL087182.

  • Zhang, C., and J. Ling, 2017: Barrier effect of the Indo-Pacific Maritime Continent on the MJO: Perspectives from tracking MJO precipitation. J. Climate, 30, 34393459, https://doi.org/10.1175/JCLI-D-16-0614.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, Y., J. Fang, and S. Wang, 2021: Impact of islands on the MJO propagation across the Maritime Continent: A numerical modeling study of an MJO event. Climate Dyn., 57, 29212935, https://doi.org/10.1007/s00382-021-05849-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, L., Z. Meng, F. Zhang, and P. M. Markowski, 2017: The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island. Atmos. Chem. Phys., 17, 13 21313 232, https://doi.org/10.5194/acp-17-13213-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 481 476 69
Full Text Views 139 138 5
PDF Downloads 162 161 4

Diurnal Cycle and Dipolar Pattern of Precipitation over Borneo during an MJO Event: Lee Convergence and Offshore Propagation

Yihao ZhouaKey Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Yihao Zhou in
Current site
Google Scholar
PubMed
Close
,
Shuguang WangaKey Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Shuguang Wang in
Current site
Google Scholar
PubMed
Close
, and
Juan FangaKey Laboratory of Mesoscale Severe Weather, Ministry of Education, School of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Juan Fang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Surface precipitation anomalies over Maritime Continent islands typically lead oceanic precipitation by a week in the form of dipolar pattern before the arrival of Madden–Julian oscillation (MJO) convective phase. The authors study this dipolar pattern over Borneo during the boreal winter MJO event in January–February 2017 using cloud-permitting modeling, observation, and reanalysis datasets. The diurnal cycles of precipitation are analyzed during the local growing and decaying stages of this MJO event. Both the observation and simulation show positive precipitation anomaly over southwestern Borneo and negative anomaly over northeastern Borneo associated with the MJO easterly in the growing stage, whereas the pattern reverses in the decaying stage. Due to relatively high terrain, the low-level flows over Borneo split near the topography on the diurnal time scale. During the late afternoon and night (1700–2000 local solar time), the splitting-flow-induced wake vortices and thermally driven sea breezes tend to converge at the leeside, both contributing to leeward convergence and precipitation, which peaks at midnight. Subsequent offshore propagation during midnight and early morning develops from the leeward inland convection, and propagates northwestwards in the growing stage over west Borneo, and eastward in the decaying stage over east Borneo. Offshore propagation lasts until the next noon when sea breezes and island convection initiate. The timing and location of the offshore propagation suggest that it is not an independent convective mode. Instead, it is tied to the dipolar distribution of island precipitation modulated by the MJO.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: Shuguang Wang, wangsg@outlook.com

Abstract

Surface precipitation anomalies over Maritime Continent islands typically lead oceanic precipitation by a week in the form of dipolar pattern before the arrival of Madden–Julian oscillation (MJO) convective phase. The authors study this dipolar pattern over Borneo during the boreal winter MJO event in January–February 2017 using cloud-permitting modeling, observation, and reanalysis datasets. The diurnal cycles of precipitation are analyzed during the local growing and decaying stages of this MJO event. Both the observation and simulation show positive precipitation anomaly over southwestern Borneo and negative anomaly over northeastern Borneo associated with the MJO easterly in the growing stage, whereas the pattern reverses in the decaying stage. Due to relatively high terrain, the low-level flows over Borneo split near the topography on the diurnal time scale. During the late afternoon and night (1700–2000 local solar time), the splitting-flow-induced wake vortices and thermally driven sea breezes tend to converge at the leeside, both contributing to leeward convergence and precipitation, which peaks at midnight. Subsequent offshore propagation during midnight and early morning develops from the leeward inland convection, and propagates northwestwards in the growing stage over west Borneo, and eastward in the decaying stage over east Borneo. Offshore propagation lasts until the next noon when sea breezes and island convection initiate. The timing and location of the offshore propagation suggest that it is not an independent convective mode. Instead, it is tied to the dipolar distribution of island precipitation modulated by the MJO.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the Years of the Maritime Continent Special Collection.

Corresponding author: Shuguang Wang, wangsg@outlook.com

Supplementary Materials

    • Supplemental Materials (PDF 1.80 MB)
Save