• Ciesielski, P. E., L. Hartten, and R. H. Johnson, 1997: Impacts of merging profiler and rawinsonde winds on TOGA COARE analyses. J. Atmos. Oceanic Technol., 14, 12641279, https://doi.org/10.1175/1520-0426(1997)014<1264:IOMPAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., and Coauthors, 2014: Quality controlled upper-air sounding dataset for DYNAMO/CINDY/AMIE: Development and corrections. J. Atmos. Oceanic Technol., 31, 741764, https://doi.org/10.1175/JTECH-D-13-00165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, X. Jiang, Y. Zhang, and S. Xie, 2017: Relationships between radiation, clouds, and convection during DYNAMO. J. Geophys. Res. Atmos., 122, 25292548, https://doi.org/10.1002/2016JD025965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., R. H. Johnson, S. Tang, Y. Zhang, and S. Xie, 2021: Comparison of conventional and constrained variational methods for computing large-scale budgets and forcing fields. J. Geophys. Res. Atmos., 126, e2021JD035183, https://doi.org/10.1029/2021JD035183.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. A. McFarlane, C. Schumacher, S. Ellis, J. Comstock, and N. Bharadwaj, 2014: Constructing a merged cloud–precipitation radar dataset for tropical convective clouds during the DYNAMO/AMIE experiment at Addu Atoll. J. Atmos. Oceanic Technol., 31, 10211042, https://doi.org/10.1175/JTECH-D-13-00132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., and R. H. Johnson, 1991: Heat and moisture budgets of an intense midlatitude squall line. J. Atmos. Sci., 48, 122146, https://doi.org/10.1175/1520-0469(1991)048<0122:HAMBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, https://doi.org/10.1175/MWR-D-13-00022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamming, R. W., 1989: Digital Filters. Dover, 284 pp.

    • Crossref
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, E. F. Stocker, and D. B. Wolff, 2007: The TRMM Multisatellite Precipitation Analysis: Quasi-global, multiyear, combined-sensor precipitation estimates at fine scale. J. Hydrometeor., 8, 3355, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., 1980: Diagnosis of convective and mesoscale motions during phase III of GATE. J. Atmos. Sci., 37, 733753, https://doi.org/10.1175/1520-0469(1980)037<0733:DOCAMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2000: Rainfall and radiative heating rate estimates from TOGA COARE atmospheric budgets. J. Atmos. Sci., 57, 14971514, https://doi.org/10.1175/1520-0469(2000)057<1497:RARHRF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., P. E. Ciesielski, J. H. Ruppert Jr., and M. Katsumata, 2015: Sounding-based thermodynamic budgets for DYNAMO. J. Atmos. Sci., 72, 598622, https://doi.org/10.1175/JAS-D-14-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., P. E. Ciesieslki, and R. H. Johnson, 2003: Sampling errors in rawinsonde-array budgets. J. Atmos. Sci., 60, 26972714, https://doi.org/10.1175/1520-0469(2003)060<2697:SEIRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNab, A. J., and A. K. Betts, 1978: A mesoscale budget study of cumulus convection. Mon. Wea. Rev., 106, 13171331, https://doi.org/10.1175/1520-0493(1978)106<1317:AMBSOC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moum, J. N., and Coauthors, 2014: Air–sea interactions from westerly wind bursts during the November 2011 MJO in the Indian Ocean. Bull. Amer. Meteor. Soc., 95, 11851199, https://doi.org/10.1175/BAMS-D-12-00225.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1990: A thermodynamic foundation for modeling the moist atmosphere. J. Atmos. Sci., 47, 25802593, https://doi.org/10.1175/1520-0469(1990)047<2580:ATFFMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 2001: A dynamic and thermodynamic foundation for modeling the moist atmosphere with parameterized microphysics. J. Atmos. Sci., 58, 20732102, https://doi.org/10.1175/1520-0469(2001)058<2073:ADATFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

    • Crossref
    • Export Citation
  • Powell, S. W., R. A. Houze Jr., and S. R. Brodzik, 2016: Rainfall-type categorization of radar echoes using polar coordinate reflectivity. J. Atmos. Sci., 33, 523538, https://doi.org/10.1175/JTECH-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Praveen Kumar, B., J. Vialard, M. Lengaigne, V. S. N. Murty, M. J. McPhaden, M. F. Cronin, F. Pinsard, and K. Gopala Reddy, 2012: TropFlux wind stresses over the tropical oceans: Evaluation and comparison with other products. Climate Dyn., 40, 20492071, https://doi.org/10.1007/s00382-012-1455-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., P. E. Ciesielski, and R. H. Johnson, 2018: Heat and moisture budget analysis with an improved form of moist thermodynamics. arXiv, 1810.11119v1, https://doi.org/10.48550/arXiv.1810.11119.

    • Crossref
    • Export Citation
  • Shell, K. M., S. P. de Szoeke, M. Makiyama, and Z. Feng, 2020: Vertical structure of the radiative heating rates of the MJO during DYNAMO. J. Climate, 33, 53175335, https://doi.org/10.1175/JCLI-D-19-0519.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Virts, K. S., and R. A. Houze Jr., 2015: Clouds and water vapor in the tropical tropopause transition layer over mesoscale convective systems. J. Atmos. Sci., 72, 47394753, https://doi.org/10.1175/JAS-D-15-0122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., and S. A. Rutledge, 2014: Convective characteristics of the Madden–Julian oscillation over the central Indian Ocean observed by shipborne radar during DYNAMO. J. Atmos. Sci., 71, 28592877, https://doi.org/10.1175/JAS-D-13-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, W., S. A. Rutledge, C. Schumacher, and M. Katsumata, 2015: Evolution, properties and spatial variability of MJO convection near and off the equator during DYNAMO. J. Atmos. Sci., 72, 41264147, https://doi.org/10.1175/JAS-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yanai, M., and R. H. Johnson, 1993: Impacts of cumulus convection on thermodynamic fields. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 24, Amer. Meteor. Soc., 39–62, https://doi.org/10.1007/978-1-935704-13-3_4.

    • Crossref
    • Export Citation
  • Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, https://doi.org/10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yu, H., R. H. Johnson, P. E. Ciesielski, and H.-C. Kuo, 2018: Observation of quasi-2-day convective disturbances in the equatorial Indian Ocean during DYNAMO. J. Atmos. Sci., 75, 28672888, https://doi.org/10.1175/JAS-D-17-0351.1.

    • Search Google Scholar
    • Export Citation
  • Zuluaga, M. D., and R. A. Houze Jr., 2013: Evolution of the population of precipitating convective systems over the equatorial Indian Ocean in active phases of the Madden–Julian oscillation. J. Atmos. Sci., 70, 27132725, https://doi.org/10.1175/JAS-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 681 287 13
Full Text Views 174 100 3
PDF Downloads 176 105 1

Hydrometeor Storage and Advection Effects in DYNAMO Budget Analyses

Richard H. JohnsonaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Richard H. Johnson in
Current site
Google Scholar
PubMed
Close
,
Paul E. CiesielskiaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Paul E. Ciesielski in
Current site
Google Scholar
PubMed
Close
, and
Wayne H. SchubertaDepartment of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Wayne H. Schubert in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Dynamics of the Madden–Julian Oscillation (MJO) (DYNAMO) field campaign over the central Indian Ocean captured three strong MJO events during October–December 2011. Using the conventional budget approach of Yanai et al. surface rainfall P0 is computed as a residual from the vertically integrated form of the moisture budget equation. This budget-derived P0 is spatially averaged over the Gan Island NCAR S-PolKa radar domain and compared with rainfall estimates from the radar itself. To isolate the MJO signal, these rainfall time series are low-pass (LP) filtered and a three-MJO composite is created based on the time of maximum LP-filtered S-PolKa rainfall for each event. A comparison of the two composite rainfall estimates shows that the budget rainfall overestimates the radar rainfall by ∼15% in the MJO buildup stage and underestimates radar rainfall by ∼8% in the MJO decay stage. These rainfall differences suggest that hydrometeor (clouds and rain) storage and advection effects, which are neglected in the budget approach, are likely significant. Satellite and ground-based observations are used to investigate these hydrometeor storage and advection effects. While the findings are qualitatively consistent with expectations from theory, they fall short of explaining their full magnitude, suggesting even more refined experimental designs and measurements will be needed to adequately address this issue.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation Special Collection.

Corresponding author: Richard H. Johnson, richard.h.johnson@colostate.edu

Abstract

The Dynamics of the Madden–Julian Oscillation (MJO) (DYNAMO) field campaign over the central Indian Ocean captured three strong MJO events during October–December 2011. Using the conventional budget approach of Yanai et al. surface rainfall P0 is computed as a residual from the vertically integrated form of the moisture budget equation. This budget-derived P0 is spatially averaged over the Gan Island NCAR S-PolKa radar domain and compared with rainfall estimates from the radar itself. To isolate the MJO signal, these rainfall time series are low-pass (LP) filtered and a three-MJO composite is created based on the time of maximum LP-filtered S-PolKa rainfall for each event. A comparison of the two composite rainfall estimates shows that the budget rainfall overestimates the radar rainfall by ∼15% in the MJO buildup stage and underestimates radar rainfall by ∼8% in the MJO decay stage. These rainfall differences suggest that hydrometeor (clouds and rain) storage and advection effects, which are neglected in the budget approach, are likely significant. Satellite and ground-based observations are used to investigate these hydrometeor storage and advection effects. While the findings are qualitatively consistent with expectations from theory, they fall short of explaining their full magnitude, suggesting even more refined experimental designs and measurements will be needed to adequately address this issue.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation Special Collection.

Corresponding author: Richard H. Johnson, richard.h.johnson@colostate.edu
Save