• Adames, Á. F., and Y. Ming, 2018: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci., 75, 20832106, https://doi.org/10.1175/JAS-D-17-0310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boettcher, M., and H. Wernli, 2013: A 10-yr climatology of diabatic Rossby waves in the Northern Hemisphere. Mon. Wea. Rev., 141, 11391154, https://doi.org/10.1175/MWR-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, https://doi.org/10.1002/qj.2454.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., P. Wu, M. J. Roberts, and T. Zhou, 2018: Potential underestimation of future mei-yu rainfall with coarse-resolution climate models. J. Climate, 31, 67116727, https://doi.org/10.1175/JCLI-D-17-0741.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y., Y. Li, and T. Zhao, 2015: Cause analysis on eastward movement of southwest China vortex and its induced extreme precipitation in south China. Adv. Meteor., 2015, 481735, https://doi.org/10.1155/2015/481735.

    • Search Google Scholar
    • Export Citation
  • Chen, Z. M., M. L. Xu, W. B. Min, and Q. Miu, 2003: Relationship between abnormal activities of south-west vortex and heavy rain the upper reach of Yangtze River during summer of 1998 (in Chinese). Plateau Meteor., 22, 162167.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 17671788, https://doi.org/10.1175/JAS-D-15-0254.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 20682074, https://doi.org/10.1126/science.289.5487.2068.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hirsch, R. M., and S. A. Archfield, 2015: Not higher but more often. Nat. Climate Change, 5, 198199, https://doi.org/10.1038/nclimate2551.

  • Holton, J. R., 2004: An Introduction to Dynamic Meteorology. 4th ed. Academic Press, 535 pp.

  • Hoskins, B. J., and M. A. Pedder, 1980: The diagnosis of middle latitude synoptic development. Quart. J. Roy. Meteor. Soc., 106, 707719, https://doi.org/10.1002/qj.49710645004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, L., X. Xu, and P. Zhao, 2018: A study of the meteorological background of convective systems over the Tibetan Plateau. Acta Meteor. Sin., 76, 944954, https://doi.org/10.11676/qxxb2018.053.

    • Search Google Scholar
    • Export Citation
  • Kang, J. M., J. Lee, S.-W. Son, J. Kim, and D. Chen, 2020: The rapid intensification of East Asian cyclones around the Korean Peninsula and their surface impacts. J. Geophys. Res. Atmos., 125, e2019JD031632, https://doi.org/10.1029/2019JD031632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., and X. Zhang, 2020: Human influence has intensified extreme precipitation in North America. Proc. Natl. Acad. Sci. USA, 117, 13 30813 313, https://doi.org/10.1073/pnas.1921628117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lackmann, G. M., D. Keyser, and L. F. Bosart, 1997: A characteristic life cycle of upper-tropospheric cyclogenetic precursors during Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA). Mon. Wea. Rev., 125, 27292758, https://doi.org/10.1175/1520-0493(1997)125<2729:ACLCOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., S.-W. Son, H.-O. Cho, J. Kim, D.-H. Cha, J. R. Gyakum, and D. Chen, 2020: Extratropical cyclones over East Asia: Climatology, seasonal cycle, and long-term trend. Climate Dyn., 54, 11311144, https://doi.org/10.1007/s00382-019-05048-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, L., R. Zhang, and M. Wen, 2017: Genesis of southwest vortices and its relation to Tibetan Plateau vortices: Genesis of SWVs and its relation to TPVs. Quart. J. Roy. Meteor. Soc., 143, 25562566, https://doi.org/10.1002/qj.3106.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., and P. A. O’Gorman, 2020: Response of vertical velocities in extratropical precipitation extremes to climate change. J. Climate, 33, 71257139, https://doi.org/10.1175/JCLI-D-19-0766.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, H., Q. You, Y. Zhang, Y. Jiao, and K. Fraedrich, 2016: Impact of large-scale circulation on the water vapour balance of the Tibetan Plateau in summer. Int. J. Climatol., 36, 42134221, https://doi.org/10.1002/joc.4626.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, Z., W. Guo, L. Jia, X. Yao, and Z. Zhou, 2020: Climatology of Tibetan Plateau vortices derived from multiple reanalysis datasets. Climate Dyn., 55, 22372252, https://doi.org/10.1007/s00382-020-05380-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, B., S. Peng, Y. Liao, and H. Wang, 2019: The characteristics and causes of increasingly severe saltwater intrusion in Pearl River Estuary. Estuarine Coastal Shelf Sci., 220, 5463, https://doi.org/10.1016/j.ecss.2019.02.041.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, H., D.-L. Zhang, and B. Wang, 2008: Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River Basin. J. Geophys. Res., 113, D22101, https://doi.org/10.1029/2008JD010072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1999: Quasigeostrophic forcing of ascent in the occluded sector of cyclones and the trowal airstream. Mon. Wea. Rev., 127, 7088, https://doi.org/10.1175/1520-0493(1999)127<0070:QFOAIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsumoto, S., K. Ninomiya, and S. Yoshizumi, 1971: Characteristic feature of “Baiu” front associated with heavy rainfall. J. Meteor. Soc. Japan, 49, 267281, https://doi.org/10.2151/jmsj1965.49.4_267.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moore, R. W., and M. T. Montgomery, 2005: Analysis of an idealized, three-dimensional diabatic Rossby vortex: A coherent structure of the moist baroclinic atmosphere. J. Atmos. Sci., 62, 27032725, https://doi.org/10.1175/JAS3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Napolitano, E., F. Fusco, R. L. Baum, J. W. Godt, and P. D. Vita, 2016: Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (Southern Italy). Landslides, 13, 967983, https://doi.org/10.1007/s10346-015-0647-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nie, J., and B. Fan, 2019: Roles of dynamic forcings and diabatic heating in summer extreme precipitation in East China and the southeastern United States. J. Climate, 32, 58155831, https://doi.org/10.1175/JCLI-D-19-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C., S.-W. Son, and J. H. Kim, 2021a: Role of baroclinic trough in triggering vertical motion during summertime heavy rainfall events in Korea. J. Atmos. Sci., 78, 16871702, https://doi.org/10.1175/JAS-D-20-0216.1.

    • Search Google Scholar
    • Export Citation
  • Park, C., S.-W. Son, J. H. Kim, E. C. Chang, J. H. Kim, E. Jo, D. H. Cha, and S. J. Jeong, 2021b: Diverse synoptic weather patterns of warm-season heavy rainfall events in South Korea. Mon. Wea. Rev., 149, 38753893, https://doi.org/10.1175/MWR-D-20-0388.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, C., S.-W. Son, and H. Kim, 2021c: Distinct features of atmospheric rivers in the early versus late EASM and their impacts on monsoon rainfall. J. Geophys. Res. Atmos., 126, e2020JD033537, https://doi.org/10.1029/2020JD033537.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, D. J., and A. J. Thorpe, 1995: Conditional convective heating in a baroclinic atmosphere: A model of convective frontogenesis. J. Atmos. Sci., 52, 16991711, https://doi.org/10.1175/1520-0469(1995)052<1699:CCHIAB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampe, T., and S. P. Xie, 2010: Large-scale dynamics of the meiyu–baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134, https://doi.org/10.1175/2009JCLI3128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shibuya, R., Y. Takayabu, and H. Kamahori, 2021: Dynamics of widespread extreme precipitation events and the associated large-scale environment using AMeDAS and JRA-55 data. J. Climate, 34, 89558970, https://doi.org/10.1175/JCLI-D-21-0064.1.

    • Search Google Scholar
    • Export Citation
  • Son, J. H., K. H. Seo, and B. Wang, 2019: Dynamical control of the Tibetan Plateau on the East Asian summer monsoon. Geophys. Res. Lett., 46, 76727679, https://doi.org/10.1029/2019GL083104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Son, J. H., K. H. Seo, and B. Wang, 2020: How does the Tibetan Plateau dynamically affect downstream monsoon precipitation? Geophys. Res. Lett., 47, e2020GL090543, https://doi.org/10.1029/2020GL090543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamarin, T., and Y. Kaspi, 2016: The poleward motion of extratropical cyclones from a potential vorticity tendency analysis. J. Atmos. Sci., 73, 16871707, https://doi.org/10.1175/JAS-D-15-0168.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomita, T., T. Yamaura, and T. Hashimoto, 2011: Interannual variability of the Baiu season near Japan evaluated from the equivalent potential temperature. J. Meteor. Soc. Japan, 89, 517537, https://doi.org/10.2151/jmsj.2011-507.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, G., X. Li, X. Wu, and J. Yu, 2015: The rainstorm comprehensive economic loss assessment based on CGE model: Using a July heavy rainstorm in Beijing as an example. Nat. Hazards, 76, 839854, https://doi.org/10.1007/s11069-014-1521-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, G. X., T. T. Ma, Y. M. Liu, and Z. H. Jiang, 2020: PV-Q perspective of cyclogenesis and vertical velocity development downstream of the Tibetan Plateau. J. Geophys. Res. Atmos., 125, e2019JD030912, https://doi.org/10.1029/2019JD030912.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • You, Y., M. Ting, and S. Camargo, 2021: Heavy rain-producing terrestrial low pressure systems over the East Asian summer monsoon region: Evolution, energetics, and trend. J. Climate, 34, 45394552, https://doi.org/10.1175/JCLI-D-20-0667.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Xu, B. Chen, and Y. Wang, 2016: The upstream “strong signals” of the water vapor transport over the Tibetan Plateau during a heavy rainfall event in the Yangtze River Basin. Adv. Atmos. Sci., 33, 13431350, https://doi.org/10.1007/s00376-016-6118-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Xu, Z. Ruan, B. Chen, and F. Wang, 2018: Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin. Meteor. Atmos. Phys., 131, 697712, https://doi.org/10.1007/s00703-018-0597-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., X. Xu, L. Liu, R. Zhang, H. Xu, Y. Wang, and J. Li, 2019: Effects of convection over the Tibetan Plateau on rainstorms downstream of the Yangtze River basin. Atmos. Res., 219, 2435, https://doi.org/10.1016/j.atmosres.2018.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhao, Y., D. L. Chen, Y. Deng, S. W. Son, X. Wang, D. Di, M. T. Pan, and X. D. Ma, 2021: How were the eastward-moving heavy rainfall events from the Tibetan Plateau to the lower reaches of the Yangtze River enhanced? J. Climate, 34, 607620, https://doi.org/10.1175/JCLI-D-20-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., F. Song, R. Lin, X. Chen, and X. Chen, 2013: The 2012 North China floods: Explaining an extreme rainfall event in the context of a longer-term drying tendency [in “Explaining Extreme Events of 2012 from a Climate Perspective”]. Bull. Amer. Meteor. Soc., 94, S49S51, https://doi.org/10.1175/BAMS-D-13-00085.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, Z. Q., S. P. Xie, and R. H. Zhang, 2021: Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions. Proc. Natl. Acad. Sci. USA, 118, e2022255118, https://doi.org/10.1073/pnas.2022255118.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhu, Z., S. Chen, K. Yuan, Y. Chen, S. Gao, and Z. Hua, 2017: Empirical subseasonal prediction of summer rainfall anomalies over the middle and lower reaches of the Yangtze River basin based on atmospheric intraseasonal oscillation. Atmosphere, 8, 185, https://doi.org/10.3390/atmos8100185.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 612 612 21
Full Text Views 232 232 6
PDF Downloads 282 282 9

Importance of Diabatic Heating for the Eastward-Moving Heavy Rainfall Events along the Yangtze River, China

Yang ZhaoaResearch Institute of Basic Sciences, Seoul National University, Seoul, South Korea
bSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Yang Zhao in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3306-9835
,
Chanil ParkbSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Chanil Park in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2563-2528
, and
Seok-Woo SonbSchool of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

Search for other papers by Seok-Woo Son in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2982-9501
Restricted access

Abstract

This study highlights the importance of the diabatic process in the heavy rainfall events (HREs) that are initiated on the eastern slope of the Tibetan Plateau and move to the lower reaches of the Yangtze River basin. These HREs, which cause significant socioeconomic losses in the Yangtze River basin, are typically maintained for 3 days. They develop when a large amount of moisture converges on the eastern slope of the Tibetan Plateau. By solving the quasigeostrophic (QG) omega equation, it is revealed that the vertical motion of HREs is organized by both dynamic and diabatic forcings, with the latter being dominant. The stationary boundary forcing on the eastern slope of the Tibetan Plateau also contributes to the initial organization of the HREs. While the dynamic vertical motion does not change much and the boundary forcing becomes negligible after the initial organization, diabatic vertical motion becomes more dominant in QG vertical motion (∼80%) as HREs develop and move downstream. The potential vorticity (PV) tendency budget analysis reveals that the development and eastward movement of the HRE-related surface cyclone is primarily associated with diabatic PV production to the east of the cyclone where a large amount of moisture converges. This result implies that the long-traveling HREs along the Yangtze River basin are highly self-maintaining in nature.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seok-Woo Son, seokwooson@snu.ac.kr

Abstract

This study highlights the importance of the diabatic process in the heavy rainfall events (HREs) that are initiated on the eastern slope of the Tibetan Plateau and move to the lower reaches of the Yangtze River basin. These HREs, which cause significant socioeconomic losses in the Yangtze River basin, are typically maintained for 3 days. They develop when a large amount of moisture converges on the eastern slope of the Tibetan Plateau. By solving the quasigeostrophic (QG) omega equation, it is revealed that the vertical motion of HREs is organized by both dynamic and diabatic forcings, with the latter being dominant. The stationary boundary forcing on the eastern slope of the Tibetan Plateau also contributes to the initial organization of the HREs. While the dynamic vertical motion does not change much and the boundary forcing becomes negligible after the initial organization, diabatic vertical motion becomes more dominant in QG vertical motion (∼80%) as HREs develop and move downstream. The potential vorticity (PV) tendency budget analysis reveals that the development and eastward movement of the HRE-related surface cyclone is primarily associated with diabatic PV production to the east of the cyclone where a large amount of moisture converges. This result implies that the long-traveling HREs along the Yangtze River basin are highly self-maintaining in nature.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Seok-Woo Son, seokwooson@snu.ac.kr

Supplementary Materials

    • Supplemental Materials (PDF 473 KB)
Save