• Abkar, M., and P. Moin, 2017: Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Bound.-Layer Meteor., 165, 405419, https://doi.org/10.1007/s10546-017-0288-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, W., and C. Meneveau, 2010: A large-eddy simulation model for boundary-layer flow over surfaces with horizontally resolved but vertically unresolved roughness elements. Bound.-Layer Meteor., 137, 397415, https://doi.org/10.1007/s10546-010-9537-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, W., and C. Meneveau, 2011: Dynamic roughness model for large-eddy simulation of turbulent flow over multiscale, fractal-like rough surfaces. J. Fluid Mech., 679, 288314, https://doi.org/10.1017/jfm.2011.137.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arthur, R. S., J. D. Mirocha, K. A. Lundquist, and R. L. Street, 2019: Using a canopy model framework to improve large-eddy simulations of the neutral atmospheric boundary layer in the Weather Research and Forecasting Model. Mon. Wea. Rev., 147, 3152, https://doi.org/10.1175/MWR-D-18-0204.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bae, H. J., and A. Lozano-Durán, 2021: Effect of wall boundary conditions on a wall-modeled large-eddy simulation in a finite-difference framework. Fluids, 6, 112, https://doi.org/10.3390/fluids6030112.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., 1990: The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech., 211, 463495, https://doi.org/10.1017/S0022112090001653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. L. Peirson, 1998: Tangential stress beneath wind-driven air–water interfaces. J. Fluid Mech., 364, 115145, https://doi.org/10.1017/S0022112098001128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E, 1999: Wave growth by non-separated sheltering. Eur. J. Mech. B/Fluids, 18, 447462, https://doi.org/10.1016/S0997-7546(99)80041-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98, 411441, https://doi.org/10.1023/A:1018703209408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2016: Structure of the airflow above surface waves. J. Phys. Oceanogr., 46, 13771397, https://doi.org/10.1175/JPO-D-15-0135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2017: Airflow measurements at a wavy air–water interface using PIV and LIF. Exp. Fluids, 58, 161, https://doi.org/10.1007/s00348-017-2439-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., and F. Veron, 2019: The turbulent airflow over wind generated surface waves. Eur. J. Mech. B/Fluids, 73, 132143, https://doi.org/10.1016/j.euromechflu.2018.04.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckley, M. P., F. Veron, and K. Yousefi, 2020: Surface viscous stress over wind-driven waves with intermittent airflow separation. J. Fluid Mech., 905, A31, https://doi.org/10.1017/jfm.2020.760.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, T., and L. Shen, 2021: A numerical and theoretical study of wind over fast-propagating water waves. J. Fluid Mech., 919, A38, https://doi.org/10.1017/jfm.2021.416.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cao, T., B. Q. Deng, and L. Shen, 2020: A simulation-based mechanistic study of turbulent wind blowing over opposing water waves. J. Fluid Mech., 901, A27, https://doi.org/10.1017/jfm.2020.591.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, https://doi.org/10.1002/qj.49708135027.

  • Desjardins, O., G. Blanquart, G. Balarac, and H. Pitsch, 2008: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys., 227, 71257159, https://doi.org/10.1016/j.jcp.2008.03.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Deskos, G., J. C. Y. Lee, C. Draxl, and M. A. Sprague, 2021: Review of wind–wave coupling models for large-eddy simulation of the marine atmospheric boundary layer. J. Atmos. Sci., 78, 3025–3045, https://doi.org/10.1175/JAS-D-21-0003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., 1990: Air-sea interaction. Ocean Eng. Sci., 9B, 239292.

  • Donelan, M. A., A. V. Babanin, I. R. Young, and M. L. Banner, 2006: Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. J. Phys. Oceanogr., 36, 16721689, https://doi.org/10.1175/JPO2933.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr., 35, 835848, https://doi.org/10.1175/JPO2704.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Druzhinin, O. A., Y. I. Troitskaya, and S. S. Zilitinkevich, 2012: Direct numerical simulation of a turbulent wind over a wavy water surface. J. Geophys. Res., 117, C00J05, https://doi.org/10.1029/2011JC007789.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere Coupled–Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gadde, S. N., A. Stieren, and R. J. A. M. Stevens, 2021: Large-eddy simulations of stratified atmospheric boundary layers: Comparison of different subgrid models. Bound.-Layer Meteor., 178, 363382, https://doi.org/10.1007/s10546-020-00570-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, https://doi.org/10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grare, L., W. L. Peirson, H. Branger, J. W. Walker, J.-P. Giovanangeli, and V. Makin, 2013: Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech., 722, 550, https://doi.org/10.1017/jfm.2013.88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hao, X., T. Cao, Z. Yang, T. Li, and L. Shen, 2018: Simulation-based study of wind-wave interaction. Procedia IUTAM, 26, 162173, https://doi.org/10.1016/j.piutam.2018.03.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hara, T., and P. P. Sullivan, 2015: Wave boundary layer turbulence over surface waves in a strongly forced condition. J. Phys. Oceanogr., 45, 868883, https://doi.org/10.1175/JPO-D-14-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Husain, N. T., T. Hara, M. P. Buckley, K. Yousefi, F. Veron, and P. P. Sullivan, 2019: Boundary layer turbulence over surface waves in a strongly forced condition: LES and observation. J. Phys. Oceanogr., 49, 19972015, https://doi.org/10.1175/JPO-D-19-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind–wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeffreys, H., 1925: On the formation of water waves by wind. Proc. Roy. Soc. London, 107A, 189206, http://doi.org/10.1098/rspa.1925.0015.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., and J. Dudhia, 2018: On the need to modify the sea surface roughness formulation over shallow waters. J. Appl. Meteor. Climatol., 57, 11011110, https://doi.org/10.1175/JAMC-D-17-0137.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kawai, S., and J. Larsson, 2012: Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy. Phys. Fluids, 24, 015105, https://doi.org/10.1063/1.3678331.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kihara, N., H. Hanazaki, T. Mizuya, and H. Ueda, 2007: Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids, 19, 015102, https://doi.org/10.1063/1.2409736.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2004: Impact of swell on the marine atmospheric boundary layer. J. Phys. Oceanogr., 34, 934949, https://doi.org/10.1175/1520-0485(2004)034<0934:IOSOTM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J., M. Cho, and H. Choi, 2013: Large eddy simulations of turbulent channel and boundary layer flows at high Reynolds number with mean wall shear stress boundary condition. Phys. Fluids, 25, 110808, https://doi.org/10.1063/1.4819342.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, M. Y., C. H. Moeng, W. T. Tsai, P. P. Sullivan, and S. E. Belcher, 2008: Direct numerical simulation of wind-wave generation processes. J. Fluid Mech., 616, 130, https://doi.org/10.1017/S0022112008004060.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1969: A nonlinear mechanism for the generation of sea waves. Proc. Roy. Soc. London, 311A, 371389, https://doi.org/10.1098/rspa.1969.0123.

    • Search Google Scholar
    • Export Citation
  • MacArt, J. F., and M. E. Mueller, 2016: Semi-implicit iterative methods for low Mach number turbulent reacting flows: Operator splitting versus approximate factorization. J. Comput. Phys., 326, 569595, https://doi.org/10.1016/j.jcp.2016.09.016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204, https://doi.org/10.1017/S0022112057000567.

  • Miles, J., 1993: Surface-wave generation revisited. J. Fluid Mech., 256, 427441, https://doi.org/10.1017/S0022112093002836.

  • Moeng, C. H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, https://doi.org/10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicoud, F., J. S. Baggett, P. Moin, and W. Cabot, 2001: Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation. Phys. Fluids, 13, 29682984, https://doi.org/10.1063/1.1389286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peirson, W. L., and A. W. Garcia, 2008: On the wind-induced growth of slow water waves of finite steepness. J. Fluid Mech., 608, 243274, https://doi.org/10.1017/S002211200800205X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piomelli, U., and E. Balaras, 2002: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech., 34, 349374, https://doi.org/10.1146/annurev.fluid.34.082901.144919.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87, 19611967, https://doi.org/10.1029/JC087iC03p01961.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozema, W., H. J. Bae, P. Moin, and R. Verstappen, 2015: Minimum-dissipation models for large-eddy simulation. Phys. Fluids, 27, 085107, https://doi.org/10.1063/1.4928700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., and U. Schumann, 1992: Large-eddy simulation of turbulent flow above and within a forest. Bound.-Layer Meteor., 61, 4764, https://doi.org/10.1007/BF02033994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shemdin, O. H., and E. Y. Hsu, 1967: Direct measurement of aerodynamic pressure above a simple progressive gravity wave. J. Fluid Mech., 30, 403416, https://doi.org/10.1017/S0022112067001508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The hexos results. Bound.-Layer Meteor., 60, 109142, https://doi.org/10.1007/BF00122064.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159, https://doi.org/10.1017/S0022112081002528.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Su, H. B., R. H. Shaw, K. T. Pawu, C. H. Moeng, and P. P. Sullivan, 1998: Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Bound.-Layer Meteor., 88, 363397, https://doi.org/10.1023/A:1001108411184.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C. H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, https://doi.org/10.1017/S0022112099006965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci., 65, 12251245, https://doi.org/10.1175/2007JAS2427.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and E. G. Patton, 2014: Large-eddy simulation of marine atmospheric boundary layers above a spectrum of moving waves. J. Atmos. Sci., 71, 40014027, https://doi.org/10.1175/JAS-D-14-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., M. L. Banner, R. P. Morison, and W. L. Peirson, 2018: Turbulent flow over steep steady and unsteady waves under strong wind forcing. J. Phys. Oceanogr., 48, 327, https://doi.org/10.1175/JPO-D-17-0118.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590, https://doi.org/10.1175/1520-0485(2001)031<0572:TDOSSR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toba, Y., N. Iida, H. Kawamura, N. Ebuchi, and I. S. F. Jones, 1990: Wave dependence of sea-surface wind stress. J. Phys. Oceanogr., 20, 705721, https://doi.org/10.1175/1520-0485(1990)020<0705:WDOSSW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., and L. Shen, 2010: Direct-simulation-based study of turbulent flow over various waving boundaries. J. Fluid Mech., 650, 131180, https://doi.org/10.1017/S0022112009993557.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., C. Meneveau, and L. Shen, 2013: Dynamic modelling of sea-surface roughness for large-eddy simulation of wind over ocean wavefield. J. Fluid Mech., 726, 6299, https://doi.org/10.1017/jfm.2013.215.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, D., C. Meneveau, and L. Shen, 2014: Effect of downwind swells on offshore wind energy harvesting—A large-eddy simulation study. Renewable Energy, 70, 1123, https://doi.org/10.1016/j.renene.2014.03.069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yousefi, K., F. Veron, and M. P. Buckley, 2020: Momentum flux measurements in the airflow over wind-generated surface waves. J. Fluid Mech., 895, A15, https://doi.org/10.1017/jfm.2020.276.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 711 711 30
Full Text Views 242 242 7
PDF Downloads 281 281 7

A Sea Surface–Based Drag Model for Large-Eddy Simulation of Wind–Wave Interaction

Aditya K. AiyeraDepartment of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Aditya K. Aiyer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8163-8564
,
Luc DeikeaDepartment of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
bHigh Meadows Environmental Institute, Princeton University, Princeton, New Jersey

Search for other papers by Luc Deike in
Current site
Google Scholar
PubMed
Close
, and
Michael E. MuelleraDepartment of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Michael E. Mueller in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Monin–Obukhov similarity theory (MOST) is a well-tested approach for specifying the fluxes when the roughness surfaces are homogeneous. For flow over waves (inhomogeneous surfaces), phase-averaged roughness length scales are often prescribed through models based on the wave characteristics and the wind speed. However, such approaches lack generalizability over different wave ages and steepnesses due to the reliance on model coefficients tuned to specific datasets. In this paper, a sea surface–based hydrodynamic drag model applicable to moving surfaces is developed to model the pressure-based surface drag felt by the wind due to the waves. The model is based on the surface gradient approach of Anderson and Meneveau applicable to stationary obstacles and extended here to the wind–wave problem. The wave drag model proposed specifies the hydrodynamic force based on the incoming momentum flux, wave phase speed, and the surface frontal area. The drag coefficient associated with the wind–wave momentum exchange is determined based on the wave steepness. The wave drag model is used to simulate turbulent airflow above a monochromatic wave train with different wave ages and wave steepnesses. The mean velocity profiles and model form stresses are validated with available laboratory-scale experimental data and show good agreement across a wide range of wave steepnesses and wave ages. The drag force is correlated with the wave surface gradient and out-of-phase with the wave height distribution by a factor of π/2 for the sinusoidal wave train considered. These results demonstrate that the current approach is sufficiently general over a wide parameter space compared to wave phase-averaged models with a minimal increase in computational cost.

Significance Statement

Understanding the physics of wind waves plays an important role in the context of numerous geophysical and engineering applications. A drag-based model is developed that characterizes the effect of the sea surface waves on the wind above. The model is validated with existing experimental datasets and is shown to be effective in predicting the average wind velocity and stress over waves with varied steepnesses and phase speeds. The ease of implementation and low computational cost of the model make it useful for studying turbulent atmospheric-scale flows over the sea surface important in offshore wind energy research as well as for modeling air–sea fluxes of momentum, heat, and mass.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aditya Aiyer, aaiyer@princeton.edu

Abstract

Monin–Obukhov similarity theory (MOST) is a well-tested approach for specifying the fluxes when the roughness surfaces are homogeneous. For flow over waves (inhomogeneous surfaces), phase-averaged roughness length scales are often prescribed through models based on the wave characteristics and the wind speed. However, such approaches lack generalizability over different wave ages and steepnesses due to the reliance on model coefficients tuned to specific datasets. In this paper, a sea surface–based hydrodynamic drag model applicable to moving surfaces is developed to model the pressure-based surface drag felt by the wind due to the waves. The model is based on the surface gradient approach of Anderson and Meneveau applicable to stationary obstacles and extended here to the wind–wave problem. The wave drag model proposed specifies the hydrodynamic force based on the incoming momentum flux, wave phase speed, and the surface frontal area. The drag coefficient associated with the wind–wave momentum exchange is determined based on the wave steepness. The wave drag model is used to simulate turbulent airflow above a monochromatic wave train with different wave ages and wave steepnesses. The mean velocity profiles and model form stresses are validated with available laboratory-scale experimental data and show good agreement across a wide range of wave steepnesses and wave ages. The drag force is correlated with the wave surface gradient and out-of-phase with the wave height distribution by a factor of π/2 for the sinusoidal wave train considered. These results demonstrate that the current approach is sufficiently general over a wide parameter space compared to wave phase-averaged models with a minimal increase in computational cost.

Significance Statement

Understanding the physics of wind waves plays an important role in the context of numerous geophysical and engineering applications. A drag-based model is developed that characterizes the effect of the sea surface waves on the wind above. The model is validated with existing experimental datasets and is shown to be effective in predicting the average wind velocity and stress over waves with varied steepnesses and phase speeds. The ease of implementation and low computational cost of the model make it useful for studying turbulent atmospheric-scale flows over the sea surface important in offshore wind energy research as well as for modeling air–sea fluxes of momentum, heat, and mass.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aditya Aiyer, aaiyer@princeton.edu
Save