• Albertson, J. D., and M. B. Parlange, 1999: Surface length scales and shear stress: Implications for land-atmosphere interaction over complex terrain. Water Resour. Res., 35, 21212132, https://doi.org/10.1029/1999WR900094.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aubinet, M., B. Heinesch, and M. Yernaux, 2003: Horizontal and vertical CO2 advection in a sloping forest. Bound.-Layer Meteor., 108, 397417, https://doi.org/10.1023/A:1024168428135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bailey, B. N., and R. Stoll, 2016: The creation and evolution of coherent structures in plant canopy flows and their role in turbulent transport. J. Fluid Mech., 789, 425460, https://doi.org/10.1017/jfm.2015.749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., T. M. J. Newley, and J. C. R. Hunt, 1993: The drag on an undulating surface induced by the flow of a turbulent boundary layer. J. Fluid Mech., 249, 557596, https://doi.org/10.1017/S0022112093001296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bou-Zeid, E., C. Meneveau, and M. Parlange, 2005: A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids, 17, 025105, https://doi.org/10.1063/1.1839152.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, A. R., J. M. Hobson, and N. Wood, 2001: Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Bound.-Layer Meteor., 98, 411441, https://doi.org/10.1023/A:1018703209408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brunet, Y., J. J. Finnigan, and M. R. Raupach, 1994: A wind tunnel study of air flow in waving wheat: Single-point velocity statistics. Bound.-Layer Meteor., 70, 95132, https://doi.org/10.1007/BF00712525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., N. L. Dias, and L. S. Freire, 2018: A TKE-based framework for studying disturbed atmospheric surface layer flows and application to vertical velocity variance over canopies. Geophys. Res. Lett., 45, 67346740, https://doi.org/10.1029/2018GL077853.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamecki, M., and Coauthors, 2020: Effects of vegetation and topography on the boundary layer structure above the Amazon forest. J. Atmos. Sci., 77, 29412957, https://doi.org/10.1175/JAS-D-20-0063.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., M. Chamecki, and G. G. Katul, 2019: Effects of topography on in-canopy transport of gases emitted within dense forests. Quart. J. Roy. Meteor. Soc., 145, 21012114, https://doi.org/10.1002/qj.3546.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, B., M. Chamecki, and G. G. Katul, 2020: Effects of gentle topography on forest-atmosphere gas exchanges and implications for eddy-covariance measurements. J. Geophys. Res. Atmos., 125, e2020JD032581, https://doi.org/10.1029/2020JD032581.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chester, S., C. Meneveau, and M. B. Parlange, 2007: Modeling turbulent flow over fractal trees with renormalized numerical simulation. J. Comput. Phys., 225, 427448, https://doi.org/10.1016/j.jcp.2006.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dias-Júnior, C. Q., and Coauthors, 2019: Is there a classical inertial sublayer over the Amazon forest? Geophys. Res. Lett., 46, 56145622, https://doi.org/10.1029/2019GL083237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diebold, M., C. Higgins, J. Fang, A. Bechmann, and M. B. Parlange, 2013: Flow over hills: A large-eddy simulation of the Bolund case. Bound.-Layer Meteor., 148, 177194, https://doi.org/10.1007/s10546-013-9807-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dupont, S., Y. Brunet, and J. J. Finnigan, 2008: Large-eddy simulation of turbulent flow over a forested hill: Validation and coherent structure identification. Quart. J. Roy. Meteor. Soc., 134, 19111929, https://doi.org/10.1002/qj.328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dwyer, M. J., E. G. Patton, and R. H. Shaw, 1997: Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Bound.-Layer Meteor., 84, 2343, https://doi.org/10.1023/A:1000301303543.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32, 519571, https://doi.org/10.1146/annurev.fluid.32.1.519.

  • Finnigan, J., and S. E. Belcher, 2004: Flow over a hill covered with a plant canopy. Quart. J. Roy. Meteor. Soc., 130, 129, https://doi.org/10.1256/qj.02.177.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Finnigan, J., R. H. Shaw, and E. G. Patton, 2009: Turbulence structure above a vegetation canopy. J. Fluid Mech., 637, 387424, https://doi.org/10.1017/S0022112009990589.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fisch, G., J. Tota, L. A. T. Machado, M. A. F. Silva Dias, R. F. da F. Lyra, C. A. Nobre, A. J. Dolman and J. H. C. Gash, 2004: The convective boundary layer over pasture and forest in Amazonia. Theor. Appl. Climatol., 78, 4759, https://doi.org/10.1007/s00704-004-0043-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes, J. D., and Coauthors, 2016: Linking meteorology, turbulence, and air chemistry in the Amazon rain forest. Bull. Amer. Meteor. Soc., 97, 23292342, https://doi.org/10.1175/BAMS-D-15-00152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerken, T., M. Chamecki, and J. D. Fuentes, 2017: Air-parcel residence times within forest canopies. Bound.-Layer Meteor., 165, 2954, https://doi.org/10.1007/s10546-017-0269-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giometto, M. G., A. Christen, C. Meneveau, J. Fang, M. Krafczyk, and M. B. Parlange, 2016: Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Bound.-Layer Meteor., 160, 425452, https://doi.org/10.1007/s10546-016-0157-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gloerfelt, X., and P. Cinnella, 2019: Large eddy simulation requirements for the flow over periodic hills. Flow Turbul. Combust., 103, 5591, https://doi.org/10.1007/s10494-018-0005-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heisel, M., B. Chen, J. F. Kok, and M. Chamecki, 2021: Gentle topography increases vertical transport of coarse dust by orders of magnitude. J. Geophys. Res. Atmos., 126, e2021JD034564, https://doi.org/10.1029/2021JD034564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hunt, J. C. R., S. Leibovich, and K. J. Richards, 1988: Turbulent shear flows over low hills. Quart. J. Roy. Meteor. Soc., 114, 14351470, https://doi.org/10.1002/qj.49711448405.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jackson, P. S., 1981: On the displacement height in the logarithmic velocity profile. J. Fluid Mech., 111, 1525, https://doi.org/10.1017/S0022112081002279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 304 pp.

    • Crossref
    • Export Citation
  • Katul, G. G., J. J. Finnigan, D. Poggi, R. Leuning, and S. E. Belcher, 2006: The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange. Bound.-Layer Meteor., 118, 189216, https://doi.org/10.1007/s10546-005-6436-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krank, B., M. Kronbichler, and W. A. Wall, 2018: Direct numerical simulation of flow over periodic hills up to ReH = 10,595. Flow Turbul. Combust., 101, 521551, https://doi.org/10.1007/s10494-018-9941-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kruijt, B., Y. Malhi, J. Lloyd, A. D. Norbre, A. C. Miranda, M. G. P. Pereira, A. Culf, and J. Grace, 2000: Turbulence statistics above and within two Amazon rain forest canopies. Bound.-Layer Meteor., 94, 297331, https://doi.org/10.1023/A:1002401829007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326, https://doi.org/10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Q., E. Bou-Zeid, and W. Anderson, 2016: The impact and treatment of the Gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. J. Comput. Phys., 310, 237251, https://doi.org/10.1016/j.jcp.2016.01.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1966: The representation of small scale turbulence in numerical simulation experiments. Proc. IBM Scientific Computing Symp. on Environmental Sciences, Yorktown Heights, NY, 195–210.

  • Lin, X., M. Chamecki, G. Katul, and X. Yu, 2018: Effects of leaf area index and density on ultrafine particle deposition onto forest canopies: A LES study. Atmos. Environ., 189, 153163, https://doi.org/10.1016/j.atmosenv.2018.06.048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, X., M. Chamecki, and X. Yu, 2020: Aerodynamic and deposition effects of street trees on PM2.5 concentration: From street to neighborhood scale. Build. Environ., 185, 107291, https://doi.org/10.1016/j.buildenv.2020.107291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Y., H. Liu, T. Banerjee, G. G. Katul, C. Yi, and E. R. Pardyjak, 2020: The effects of canopy morphology on flow over a two-dimensional isolated ridge. J. Geophys. Res. Atmos., 125, e2020JD033027, https://doi.org/10.1029/2020JD033027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mason, P. J., and D. J. Thomson, 1987: Large-eddy simulations of the neutral-static-stability planetary boundary layer. Quart. J. Roy. Meteor. Soc., 113, 413443, https://doi.org/10.1002/qj.49711347602.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mittal, R., and G. Iaccarino, 2005: Immerse boundary methods. Annu. Rev. Fluid Mech., 37, 239261, https://doi.org/10.1146/annurev.fluid.37.061903.175743.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moin, P., and J. Kim, 1982: Numerical investigation of turbulent channel flow. J. Fluid Mech., 118, 341377, https://doi.org/10.1017/S0022112082001116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ouwersloot, H. G., A. F. Moene, J. J. Attema, and J. V. G. de Arellano, 2017: Large-eddy simulation comparison of neutral flow over a canopy: Sensitivities to physical and numerical conditions, and similarity to other representations. Bound.-Layer Meteor., 162, 7189, https://doi.org/10.1007/s10546-016-0182-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., and M. Chamecki, 2016: A scaling law for the shear-production range of second-order structure functions. J. Fluid Mech., 801, 459474, https://doi.org/10.1017/jfm.2016.427.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, Y., M. Chamecki, and S. A. Isard, 2014: Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer. J. Fluid Mech., 753, 499534, https://doi.org/10.1017/jfm.2014.379.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Patton, E. G., and G. G. Katul, 2009: Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Bound.-Layer Meteor., 133, 189217, https://doi.org/10.1007/s10546-009-9427-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peskin, C. S., 1972: Flow patterns around heart valves: A numerical method. J. Comput. Phys., 10, 252271, https://doi.org/10.1016/0021-9991(72)90065-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., and G. G. Katul, 2007: Turbulent flows on forested hilly terrain: The recirculation region. Quart. J. Roy. Meteor. Soc., 133, 10271039, https://doi.org/10.1002/qj.73.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., G. G. Katul, J. J. Finnigan, and S. E. Belcher, 2008: Analytical models for the mean flow inside dense canopies on gentle hilly terrain. Quart. J. Roy. Meteor. Soc., 134, 10951112, https://doi.org/10.1002/qj.276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rapp, C., and M. Manhart, 2011: Flow over periodic hills: An experimental study. Exp. Fluids, 51, 247269, https://doi.org/10.1007/s00348-011-1045-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., and A. S. Thom, 1981: Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13, 97129, https://doi.org/10.1146/annurev.fl.13.010181.000525.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., 2008: Large-eddy simulations of flow over forested ridges. Bound.-Layer Meteor., 128, 5976, https://doi.org/10.1007/s10546-008-9278-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., 2011: Scalar transport over forested hills. Bound.-Layer Meteor., 141, 179199, https://doi.org/10.1007/s10546-011-9628-y.

  • Ross, A. N., and S. B. Vosper, 2005: Neutral turbulent flow over forested hills. Quart. J. Roy. Meteor. Soc., 131, 18411862, https://doi.org/10.1256/qj.04.129.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., and I. N. Harman, 2015: The impact of source distribution on scalar transport over forested hills. Bound.-Layer Meteor., 156, 211230, https://doi.org/10.1007/s10546-015-0029-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruck, B., and E. Adams, 1991: Fluid mechanical aspects of the pollutant transport to coniferous trees. Bound.-Layer Meteor., 56, 163195, https://doi.org/10.1007/BF00119966.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santana, R. A., C. Q. Dias-Júnior, J. T. da Silva, J. D. Fuentes, R. S. do Vale, E. G. Alves, R. M. N. dos Santos, and A. O. Manzi, 2018: Air turbulence characteristics at multiple sites in and above the Amazon rainforest canopy. Agric. For. Meteor., 260–261, 4154, https://doi.org/10.1016/j.agrformet.2018.05.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., and U. Schumann, 1992: Large-eddy simulation of turbulent flow above and within a forest. Bound.-Layer Meteor., 61, 4764, https://doi.org/10.1007/BF02033994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Wea. Rev., 91, 99164, https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tamura, T., A. Okuno, and Y. Sugio, 2007: LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation. J. Wind Eng. Ind. Aerodyn., 95, 14631475, https://doi.org/10.1016/j.jweia.2007.02.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tóta, J., D. R. Fitzjarrald, and M. A. F. da Silva Dias, 2012: Amazon rainforest exchange of carbon and subcanopy air flow: Manaus LBA site—A complex terrain condition. Sci. World J., 2012, 165067, https://doi.org/10.1100/2012/165067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tseng, Y.-H., C. Meneveau, and M. B. Parlange, 2006: Modeling flow around bluff bodies and predicting urban dispersion using large eddy simulation. Environ. Sci. Technol., 40, 26532662, https://doi.org/10.1021/es051708m.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., 2000: Wind flow over complex terrain: A historical perspective and the prospect for large-eddy modelling. Bound.-Layer Meteor., 96, 1132, https://doi.org/10.1023/A:1002017732694.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, N., and P. Mason, 1993: The pressure force induced by neutral, turbulent flow over hills. Quart. J. Roy. Meteor. Soc., 119, 12331267, https://doi.org/10.1002/qj.49711951402.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yue, W., C. Meneveau, M. B. Parlange, W. Zhu, H. S. Kang, and J. Katz, 2008: Turbulent kinetic energy budgets in a model canopy: Comparisons between LES and wind-tunnel experiments. Environ. Fluid Mech., 8, 7395, https://doi.org/10.1007/s10652-007-9049-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 489 489 20
Full Text Views 171 171 16
PDF Downloads 195 195 24

Turbulent Kinetic Energy Budgets over Gentle Topography Covered by Forests

Bicheng ChenaDepartment of Physical Oceanography, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China

Search for other papers by Bicheng Chen in
Current site
Google Scholar
PubMed
Close
and
Marcelo ChameckibDepartment of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Marcelo Chamecki in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulations of flow over a “horizontally” uniform model forest are used to investigate the effects of gentle topography on the turbulent kinetic energy (TKE) budget within the canopy roughness sublayer. Despite significant differences between simulations using idealized sinusoidal topography and real topography of the Amazon forest, results indicate that the effects of topography are located predominantly in the upper canopy and above, and are mostly caused by mean advection of TKE. The “horizontally” averaged TKE budget from idealized and real gentle topographies are almost identical to that for flat terrain, including a clear inertial layer above the roughness sublayer in which shear production is balanced by local dissipation. At topography crests, where observational towers are usually located, mean vertical advection of TKE can be as important as horizontal advection. We propose the use on an approximate TKE balance equation to estimate mean advection from single tower measurements, and introduce a new advection index that can be used as a proxy to quantify the importance of the topography on the TKE budget.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcelo Chamecki, chamecki@ucla.edu

Abstract

Large-eddy simulations of flow over a “horizontally” uniform model forest are used to investigate the effects of gentle topography on the turbulent kinetic energy (TKE) budget within the canopy roughness sublayer. Despite significant differences between simulations using idealized sinusoidal topography and real topography of the Amazon forest, results indicate that the effects of topography are located predominantly in the upper canopy and above, and are mostly caused by mean advection of TKE. The “horizontally” averaged TKE budget from idealized and real gentle topographies are almost identical to that for flat terrain, including a clear inertial layer above the roughness sublayer in which shear production is balanced by local dissipation. At topography crests, where observational towers are usually located, mean vertical advection of TKE can be as important as horizontal advection. We propose the use on an approximate TKE balance equation to estimate mean advection from single tower measurements, and introduce a new advection index that can be used as a proxy to quantify the importance of the topography on the TKE budget.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marcelo Chamecki, chamecki@ucla.edu

Supplementary Materials

    • Supplemental Materials (PDF 3.71 MB)
Save