Atmospheric Cold Pools in the Bay of Bengal

Iury T. Simoes-Sousa aUniversity of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Iury T. Simoes-Sousa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2484-510X
,
Amit Tandon aUniversity of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Amit Tandon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7124-1512
,
Jared Buckley aUniversity of Massachusetts Dartmouth, North Dartmouth, Massachusetts

Search for other papers by Jared Buckley in
Current site
Google Scholar
PubMed
Close
,
Debasis Sengupta bCentre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

Search for other papers by Debasis Sengupta in
Current site
Google Scholar
PubMed
Close
,
Sree Lekha J. cNOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Sree Lekha J. in
Current site
Google Scholar
PubMed
Close
,
Emily Shroyer dOregon State University, Corvallis, Oregon

Search for other papers by Emily Shroyer in
Current site
Google Scholar
PubMed
Close
, and
Simon P. de Szoeke dOregon State University, Corvallis, Oregon

Search for other papers by Simon P. de Szoeke in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric cold pools, generated by evaporative downdrafts from precipitating clouds, are ubiquitous in the Bay of Bengal. We use data from three moorings near 18°N to characterize a total of 465 cold pools. The cold pools are all dry, with a typical temperature drop of 2°C (maximum 5°C) and specific humidity drop of 1 g kg−1 (maximum = 6 g kg−1). Most cold pools last 1.5–3.5 h (maximum = 14 h). Cold pools occur almost every day in the north bay from April to November, principally in the late morning, associated with intense precipitation that accounts for 80% of total rain. They increase the latent heat flux to the atmosphere by about 32 W m−2 (median), although the instantaneous enhancement of latent heat flux for individual cold pools reaches 150 W m−2. During the rainiest month (July), the cold pools occur 21% of the time and contribute nearly 14% to the mean evaporation. A composite analysis of all cold pools shows that the temperature and specific humidity anomalies are responsible for ∼90% of the enhancement of sensible and latent heat flux, while variations in wind speed are responsible for the remainder. Depending on their gust-front speed, the estimated height of the cold pools primarily ranges from 850 to 3200 m, with taller fronts more likely to occur during the summer monsoon season (June–September). Our results indicate that the realistic representation of cold pools in climate models is likely to be important for improved simulation of air–sea fluxes and monsoon rainfall.

Significance Statement

Atmospheric cold pools form over the ocean when falling rain evaporates, leading to a dense cold air mass spreading over the surface. They impact air–sea heat exchanges over tropical regions and give rise to new rainstorms. We analyze data from three fixed, closely spaced buoys to describe cold pools and investigate their role in rainfall and air–sea interactions in the northern Bay of Bengal (Indian Ocean). We find that cold pools are associated with about 80% of all rain and are important for ocean–atmosphere heat and moisture exchange, especially from April to November. We estimate the speed of cold pools and derive their heights (850–3200 m) using theory.

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amit Tandon, atandon@umassd.edu

Abstract

Atmospheric cold pools, generated by evaporative downdrafts from precipitating clouds, are ubiquitous in the Bay of Bengal. We use data from three moorings near 18°N to characterize a total of 465 cold pools. The cold pools are all dry, with a typical temperature drop of 2°C (maximum 5°C) and specific humidity drop of 1 g kg−1 (maximum = 6 g kg−1). Most cold pools last 1.5–3.5 h (maximum = 14 h). Cold pools occur almost every day in the north bay from April to November, principally in the late morning, associated with intense precipitation that accounts for 80% of total rain. They increase the latent heat flux to the atmosphere by about 32 W m−2 (median), although the instantaneous enhancement of latent heat flux for individual cold pools reaches 150 W m−2. During the rainiest month (July), the cold pools occur 21% of the time and contribute nearly 14% to the mean evaporation. A composite analysis of all cold pools shows that the temperature and specific humidity anomalies are responsible for ∼90% of the enhancement of sensible and latent heat flux, while variations in wind speed are responsible for the remainder. Depending on their gust-front speed, the estimated height of the cold pools primarily ranges from 850 to 3200 m, with taller fronts more likely to occur during the summer monsoon season (June–September). Our results indicate that the realistic representation of cold pools in climate models is likely to be important for improved simulation of air–sea fluxes and monsoon rainfall.

Significance Statement

Atmospheric cold pools form over the ocean when falling rain evaporates, leading to a dense cold air mass spreading over the surface. They impact air–sea heat exchanges over tropical regions and give rise to new rainstorms. We analyze data from three fixed, closely spaced buoys to describe cold pools and investigate their role in rainfall and air–sea interactions in the northern Bay of Bengal (Indian Ocean). We find that cold pools are associated with about 80% of all rain and are important for ocean–atmosphere heat and moisture exchange, especially from April to November. We estimate the speed of cold pools and derive their heights (850–3200 m) using theory.

This article is included in the Air–Sea Interactions from the Diurnal to the Intraseasonal during the PISTON, MISOBOB, and CAMP2Ex Observational Campaigns in the Tropics Special Collection.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amit Tandon, atandon@umassd.edu
Save
  • Asher, W. E., A. T. Jessup, R. Branch, and D. Clark, 2014: Observations of rain-induced near-surface salinity anomalies. J. Geophys. Res. Oceans, 119, 54835500, https://doi.org/10.1002/2014JC009954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bhat, G. S., and H. J. S. Fernando, 2016: Remotely driven anomalous sea-air heat flux over the north Indian Ocean during the summer monsoon season. Oceanography, 29 (2), 232241, https://doi.org/10.5670/oceanog.2016.55.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., 1978: Mesoscale cloud patterns revealed by Apollo-Soyuz photographs. Bull. Amer. Meteor. Soc., 59, 14091419, https://doi.org/10.1175/1520-0477(1978)059<1409:MCPRBA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Borque, P., S. W. Nesbitt, R. J. Trapp, S. Lasher-Trapp, and M. Oue, 2020: Observational study of the thermodynamics and morphological characteristics of a midlatitude continental cold pool event. Mon. Wea. Rev., 148, 719737, https://doi.org/10.1175/MWR-D-19-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charba, J., 1974: Application of gravity current model to analysis of squall-line gust front. Mon. Wea. Rev., 102, 140156, https://doi.org/10.1175/1520-0493(1974)102<0140:AOGCMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cherian, D. A., E. L. Shroyer, H. W. Wijesekera, and J. N. Moum, 2020: The seasonal cycle of upper-ocean mixing at 8°N in the Bay of Bengal. J. Phys. Oceanogr., 50, 323342, https://doi.org/10.1175/JPO-D-19-0114.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cronin, M. F., and J. Sprintall, 2001: Wind and buoyancy-forced Upper Ocean. Encyclopedia of Ocean Sciences, J. H. Steele, Ed., Academic Press, 3219–3226, https://doi.org/10.1006/rwos.2001.0157.

    • Crossref
    • Export Citation
  • Dawson, D. T., M. Xue, J. A. Milbrandt, and M. K. Yau, 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, https://doi.org/10.1175/2009MWR2956.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Szoeke, S. P., E. D. Skyllingstad, P. Zuidema, and A. S. Chandra, 2017: Cold pools and their influence on the tropical marine boundary layer. J. Atmos. Sci., 74, 11491168, https://doi.org/10.1175/JAS-D-16-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drager, A. J., L. D. Grant, and S. C. van den Heever, 2020: Cold pool responses to changes in soil moisture. J. Adv. Model. Earth Syst., 12, e2019MS001922, https://doi.org/10.1029/2019MS001922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2013: On the exchange of momentum over the open ocean. J. Phys. Oceanogr., 43, 15891610, https://doi.org/10.1175/JPO-D-12-0173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764, https://doi.org/10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Vol. 30. Academic Press, 662 pp.

    • Crossref
    • Export Citation
  • Girishkumar, M. S., J. Joseph, M. J. McPhaden, and E. Pattabhi Ram Rao, 2021: Atmospheric cold pools and their influence on sea surface temperature in the Bay of Bengal. J. Geophys. Res. Oceans, 126, e2021JC017297, https://doi.org/10.1029/2021JC017297.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, https://doi.org/10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. B., M. Deshpande, P. Mukhopadhyay, S. K. Saha, S. A. Rao, R. Murthugudde, and B. N. Goswami, 2014: Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Climate Dyn., 43, 27252745, https://doi.org/10.1007/s00382-014-2089-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goswami, B. N., S. A. Rao, D. Sengupta, and S. Chakravorty, 2016: Monsoons to mixing in the Bay of Bengal: Multiscale air-sea interactions and monsoon predictability. Oceanography, 29 (2), 1827, https://doi.org/10.5670/oceanog.2016.35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iyer, S., and K. Drushka, 2021: Turbulence within rain-formed fresh lenses during the SPURS-2 experiment. J. Phys. Oceanogr., 51, 17051721, https://doi.org/10.1175/JPO-D-20-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jain, D., A. Chakraborty, and R. S. Nanjundaiah, 2018: A mechanism for the southward propagation of mesoscale convective systems over the Bay of Bengal. J. Geophys. Res. Atmos., 123, 38933913, https://doi.org/10.1002/2017JD027470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., 2017: Vertical velocity in the gray zone. J. Adv. Model. Earth Syst., 9, 23042316, https://doi.org/10.1002/2017MS001059.

  • Joseph, J., M. S. Girishkumar, M. J. McPhaden, and E. P. R. Rao, 2021: Diurnal variability of atmospheric cold pool events and associated air-sea interactions in the Bay of Bengal during the summer monsoon. Climate Dyn., 56, 837853, https://doi.org/10.1007/s00382-020-05506-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kilpatrick, T., S.-P. Xie, and T. Nasuno, 2017: Diurnal convection-wind coupling in the Bay of Bengal. J. Geophys. Res. Atmos., 122, 97059720, https://doi.org/10.1002/2017JD027271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Langhans, W., and D. M. Romps, 2015: The origin of water vapor rings in tropical oceanic cold pools. Geophys. Res. Lett., 42, 78257834, https://doi.org/10.1002/2015GL065623.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Z., P. Zuidema, and P. Zhu, 2014: Simulated convective invigoration processes at trade wind cumulus cold pool boundaries. J. Atmos. Sci., 71, 28232841, https://doi.org/10.1175/JAS-D-13-0184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llobera, M., 2001: Building past landscape perception with GIS: Understanding topographic prominence. J. Archaeol. Sci., 28, 10051014, https://doi.org/10.1006/jasc.2001.0720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallinson, H. M., and S. G. Lasher-Trapp, 2019: An investigation of hydrometeor latent cooling upon convective cold pool formation, sustainment, and properties. Mon. Wea. Rev., 147, 32053222, https://doi.org/10.1175/MWR-D-18-0382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ramu, D. A., and Coauthors, 2016: Indian summer monsoon rainfall simulation and prediction skill in the CFSv2 coupled model: Impact of atmospheric horizontal resolution: ISMR simulation and prediction in CFSv2. J. Geophys. Res. Atmos., 121, 22052221, https://doi.org/10.1002/2015JD024629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R., T. Fiolleau, and D. Bouniol, 2017: A simple model of the life cycle of mesoscale convective systems cloud shield in the tropics. J. Climate, 30, 42834298, https://doi.org/10.1175/JCLI-D-16-0556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2017: Exact expression for the lifting condensation level. J. Atmos. Sci., 74, 38913900, https://doi.org/10.1175/JAS-D-17-0102.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and N. Jeevanjee, 2016: On the sizes and lifetimes of cold pools. Quart. J. Roy. Meteor. Soc., 142, 15171527, https://doi.org/10.1002/qj.2754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, A. N., A. M. Tompkins, and D. J. Parker, 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 15821595, https://doi.org/10.1175/1520-0469(2004)061<1582:SMOTRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roux, F., 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos. Sci., 45, 406426, https://doi.org/10.1175/1520-0469(1988)045<0406:TWASLO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sabeerali, C. T., S. A. Rao, A. R. Dhakate, K. Salunke, and B. N. Goswami, 2015: Why ensemble mean projection of South Asian monsoon rainfall by CMIP5 models is not reliable? Climate Dyn., 45, 161174, https://doi.org/10.1007/s00382-014-2269-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sahany, S., V. Venugopal, and R. S. Nanjundiah, 2010: Diurnal-scale signatures of monsoon rainfall over the Indian region from TRMM satellite observations. J. Geophys. Res., 115, D02103, https://doi.org/10.1029/2009JD012644.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Franks, A., E. C. Kent, A. J. Matthews, B. G. Webber, S. C. Peatman, and P. N. Vinayachandran, 2018: Intraseasonal variability of air–sea fluxes over the Bay of Bengal during the southwest monsoon. J. Climate, 31, 70877109, https://doi.org/10.1175/JCLI-D-17-0652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shesu, R. V., M. Ravichandran, K. Suprit, E. P. R. Rao, and B. V. Rao, 2022: Precipitation event detection based on air temperature over the equatorial Indian Ocean. Indian J. Geo-Mar. Sci., 51, 117125, https://doi.org/10.56042/ijms.v51i02.40612.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sree Lekha, J., J. M. Buckley, A. Tandon, and D. Sengupta, 2018: Subseasonal dispersal of freshwater in the northern Bay of Bengal in the 2013 summer monsoon season. J. Geophys. Res. Oceans, 123, 63306348, https://doi.org/10.1029/2018JC014181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sree Lekha, J., A. J. Lucas, J. Sukhatme, J. K. Joseph, M. Ravichandran, N. Suresh Kumar, J. T. Farrar, and D. Sengupta, 2020: Quasi-biweekly mode of the Asian summer monsoon revealed in Bay of Bengal surface observations. J. Geophys. Res. Oceans, 125, e2020JC016271, https://doi.org/10.1029/2020JC016271.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R., and R. Wood, 2013: Aircraft observations of cold pools under marine stratocumulus. Atmos. Chem. Phys., 13, 98999914, https://doi.org/10.5194/acp-13-9899-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thakur, M. K., T. V. L. Kumar, M. S. Narayanan, K. R. Kundeti, and H. Barbosa, 2020: Analytical study of the performance of the IMERG over the Indian landmass. Meteor. Appl., 27, e1908, https://doi.org/10.1002/met.1908.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Heever, S. C., and Coauthors, 2021: The Colorado State University Convective Cloud Outflows and Updrafts Experiment (C3LOUD-Ex). Bull. Amer. Meteor. Soc., 102, E1283E1305, https://doi.org/10.1175/BAMS-D-19-0013.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and Coauthors, 2002: The JASMINE pilot study. Bull. Amer. Meteor. Soc., 83, 16031630, https://doi.org/10.1175/BAMS-83-11-1603.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wijesekera, H. W., C. A. Paulson, and A. Huyer, 1999: The effect of rainfall on the surface layer during a westerly wind burst in the western equatorial Pacific. J. Phys. Oceanogr., 29, 612632, https://doi.org/10.1175/1520-0485(1999)029<0612:TEOROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilbanks, M. C., S. E. Yuter, S. P. de Szoeke, W. A. Brewer, M. A. Miller, A. M. Hall, and C. D. Burleyson, 2015: Near-surface density currents observed in the southeast Pacific stratocumulus-topped marine boundary layer. Mon. Wea. Rev., 143, 35323555, https://doi.org/10.1175/MWR-D-14-00359.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wills, S. M., M. F. Cronin, and D. Zhang, 2021: Cold pools observed by uncrewed surface vehicles in the central and eastern tropical Pacific. Geophys. Res. Lett., 48, e2021GL093373, https://doi.org/10.1029/2021GL093373.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective–scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, https://doi.org/10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zuidema, P., 2003: Convective clouds over the Bay of Bengal. Mon. Wea. Rev., 131, 780798, https://doi.org/10.1175/1520-0493(2003)131<0780:CCOTBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment. Surv. Geophys., 38, 12831305, https://doi.org/10.1007/s10712-017-9447-x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1098 448 31
Full Text Views 283 195 23
PDF Downloads 267 179 17