• Atlaskin, E., and T. Vihma, 2012: Evaluation of NWP results for wintertime nocturnal boundary-layer temperatures over Europe and Finland. Quart. J. Roy. Meteor. Soc., 138, 14401451, https://doi.org/10.1002/qj.1885.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., and F. Porté-Agel, 2006: Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach. J. Atmos. Sci., 63, 20742091, https://doi.org/10.1175/JAS3734.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. M. Holtslag, B. J. H. Van De Wiel, A. F. Moene, and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys., 56, 8899, https://doi.org/10.2478/s11600-007-0038-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Battisti, A., O. C. Acevedo, F. D. Costa, F. S. Puhales, V. Anabor, and G. A. Degrazia, 2017: Evaluation of nocturnal temperature forecasts provided by the Weather Research and Forecast Model for different stability regimes and terrain characteristics. Bound.-Layer Meteor., 162, 523546, https://doi.org/10.1007/s10546-016-0209-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272, https://doi.org/10.1007/s10546-004-2820-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor. Climatol., 30, 327341, https://doi.org/10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boppana, V. B. L., Z.-T. Xie, and I. P. Castro, 2014: Thermal stratification effects on flow over a generic urban canopy. Bound.-Layer Meteor., 153, 141162, https://doi.org/10.1007/s10546-014-9935-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., 2013: Evaporation into the Atmosphere: Theory, History and Applications. Vol. 1. Springer, 302 pp.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189, https://doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chamberlain, A. C., 1966: Transport of gases to and from grass and grass-like surfaces. Proc. Roy. Soc. London, 290A, 236265, http://doi.org/10.1098/rspa.1966.0047.

    • Search Google Scholar
    • Export Citation
  • Cheng, H., and I. P. Castro, 2002: Near wall flow over urban-like roughness. Bound.-Layer Meteor., 104, 229259, https://doi.org/10.1023/A:1016060103448.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, H., P. Hayden, A. G. Robins, and I. P. Castro, 2007: Flow over cube arrays of different packing densities. J. Wind Eng. Ind. Aerodyn., 95, 715740, https://doi.org/10.1016/j.jweia.2007.01.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. C., and C.-H. Liu, 2011: Large-eddy simulation of turbulent transports in urban street canyons in different thermal stabilities. J. Wind Eng. Ind. Aerodyn., 99, 434442, https://doi.org/10.1016/j.jweia.2010.12.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. C., and F. Porté-Agel, 2015: Adjustment of turbulent boundary-layer flow to idealized urban surfaces: A large-eddy simulation study. Bound.-Layer Meteor., 155, 249270, https://doi.org/10.1007/s10546-015-0004-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, W. C., and F. Porté-Agel, 2021: A simple mixing-length model for urban canopy flows. Bound.-Layer Meteor., 181, 19, https://doi.org/10.1007/s10546-021-00650-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chenge, Y., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519538, https://doi.org/10.1007/s10546-004-1425-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coceal, O., T. G. Thomas, I. P. Castro, and S. E. Belcher, 2006: Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound.-Layer Meteor., 121, 491519, https://doi.org/10.1007/s10546-006-9076-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esau, I., M. Tolstykh, R. Fadeev, V. Shashkin, S. Makhnorylova, V. Miles, and V. Melnikov, 2018: Systematic errors in northern Eurasian short-term weather forecasts induced by atmospheric boundary layer thickness. Environ. Res. Lett., 13, 125009, https://doi.org/10.1088/1748-9326/aaecfb.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esau, I., and Coauthors, 2021: An enhanced integrated approach to knowledgeable high-resolution environmental quality assessment. Environ. Sci. Policy, 122, 113, https://doi.org/10.1016/j.envsci.2021.03.020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot, 1991: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids, A3, 17601765, https://doi.org/10.1063/1.857955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., 2014a: Numerical modeling of turbulent flows over an urban-type surface: Computations for neutral stratification. Izv. Atmos. Oceanic Phys., 50, 134142, https://doi.org/10.1134/S0001433814010034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., 2014b: Numerical simulation of stably stratified turbulent flows over an urban surface: Spectra and scales and parameterization of temperature and wind-velocity profiles. Izv. Atmos. Oceanic Phys., 50, 356368, https://doi.org/10.1134/S0001433814040148.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., 2014c: Numerical simulation of stably stratified turbulent flows over flat and urban surfaces. Izv. Atmos. Oceanic Phys., 50, 236245, https://doi.org/10.1134/S0001433814030037.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., 2018: Numerical simulation of turbulence and transport of fine particulate impurities in street canyons. Numer. Methods Program., 19, 1737, https://doi.org/10.26089/NumMet.v19r103.

    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., Ü. Rannik, V. Stepanenko, V. Lykosov, M. Auvinen, T. Vesala, and I. Mammarella, 2016: Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer. Geosci. Model Dev., 9, 29252949, https://doi.org/10.5194/gmd-9-2925-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., E. V. Mortikov, K. V. Barskov, E. V. Kadantsev, and S. S. Zilitinkevich, 2019: Layered structure of stably stratified turbulent shear flows. Izv. Atmos. Oceanic Phys., 55, 312323, https://doi.org/10.1134/S0001433819040042.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazunov, A. V., A. V. Debolskiy, and E. V. Mortikov, 2021: Turbulent length scale for multilayer RANS model of urban canopy and its evaluation based on large-eddy simulations. Supercomput. Front. Innovation, 8, 100116, https://doi.org/10.14529/jsfi210409.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2012: Outlier problem in evaluating similarity functions in the stable atmospheric boundary layer. Bound.-Layer Meteor., 144, 137155, https://doi.org/10.1007/s10546-012-9714-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Bound.-Layer Meteor., 147, 5182, https://doi.org/10.1007/s10546-012-9771-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryanik, V. M., C. Lüpkes, A. Grachev, and D. Sidorenko, 2020: New modified and extended stability functions for the stable boundary layer based on SHEBA and parametrizations of bulk transfer coefficients for climate models. J. Atmos. Sci., 77, 26872716, https://doi.org/10.1175/JAS-D-19-0255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grylls, T., I. Suter, and M. van Reeuwijk, 2020: Steady-state large-eddy simulations of convective and stable urban boundary layers. Bound.-Layer Meteor., 175, 309341, https://doi.org/10.1007/s10546-020-00508-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gryning, S.-E., E. Batchvarova, and H. A. R. De Bruin, 2001: Energy balance of a sparse coniferous high-latitude forest under winter conditions. Bound.-Layer Meteor., 99, 465488, https://doi.org/10.1023/A:1018939329915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haiden, T., I. Sandu, G. Balsamo, G. Arduini, and A. Beljaars, 2018: Addressing biases in near-surface forecasts. ECMWF Newsletter, No. 157, ECMWF, Reading, United Kingdom, 20–25, https://www.ecmwf.int/sites/default/files/elibrary/2018/18878-addressing-biases-near-surface-forecasts.pdf.

  • Jeričević, A., and B. Grisogono, 2006: The critical bulk Richardson number in urban areas: Verification and application in a numerical weather prediction model. Tellus, 58A, 1927, https://doi.org/10.1111/j.1600-0870.2006.00153.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joffre, S. M., M. Kangas, M. Heikinheimo, and S. A. Kitaigorodskii, 2001: Variability of the stable and unstable atmospheric boundary-layer height and its scales over a boreal forest. Bound.-Layer Meteor., 99, 429450, https://doi.org/10.1023/A:1018956525605.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46, 10671079, https://doi.org/10.1175/JAM2500.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kazakov, A. L., and V. N. Lykosov, 1982: On the parameterization of the atmosphere interaction with the underlying surface in numerical modelling of atmospheric processes (in Russian). Proc. West Siberian Reg. Sci. Res. Hydrometeor. Inst., 55, 322.

    • Search Google Scholar
    • Export Citation
  • Li, Z., T. Ming, S. Liu, C. Peng, R. de Richter, W. Li, H. Zhang, and C.-Y. Wen, 2021: Review on pollutant dispersion in urban areas—Part A: Effects of mechanical factors and urban morphology. Build. Environ., 190, 107534, https://doi.org/10.1016/j.buildenv.2020.107534.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202, https://doi.org/10.1007/BF00117978.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marucci, D., and M. Carpentieri, 2019: Effect of local and upwind stratification on flow and dispersion inside and above a bi-dimensional street canyon. Build. Environ., 156, 7488, https://doi.org/10.1016/j.buildenv.2019.04.013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massman, W. J., 1999: A model study of kBH−1 for vegetated surfaces using ‘localized near-field′ Lagrangian theory. J. Hydrol., 223, 2743, https://doi.org/10.1016/S0022-1694(99)00104-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Morinishi, Y., T. S. Lund, O. V. Vasilyev, and P. Moin, 1998: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys., 143, 90124, https://doi.org/10.1006/jcph.1998.5962.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazarian, N., E. S. Krayenhoff, and A. Martilli, 2020: A one-dimensional model of turbulent flow through “urban” canopies (MLUCM v2. 0): Updates based on large-eddy simulation. Geosci. Model Dev., 13, 937953, https://doi.org/10.5194/gmd-13-937-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., 1984: The turbulent structure of the stable, nocturnal boundary layer. J. Atmos. Sci., 41, 22022216, https://doi.org/10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pahlow, M., M. B. Parlange, and F. Porté-Agel, 2001: On Monin–Obukhov similarity in the stable atmospheric boundary layer. Bound.-Layer Meteor., 99, 225248, https://doi.org/10.1023/A:1018909000098.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Poggi, D., G. G. Katul, and J. D. Albertson, 2004: A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound.-Layer Meteor., 111, 615621, https://doi.org/10.1023/B:BOUN.0000016563.76874.47.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rigden, A., D. Li, and G. Salvucci, 2018: Dependence of thermal roughness length on friction velocity across land cover types: A synthesis analysis using AmeriFlux data. Agric. For. Meteor., 249, 512519, https://doi.org/10.1016/j.agrformet.2017.06.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Z., G. Cui, and Z. Zhang, 2017: Turbulent dispersion of pollutants in urban-type canopies under stable stratification conditions. Atmos. Environ., 156, 114, https://doi.org/10.1016/j.atmosenv.2017.02.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tomas, J. M., M. J. B. M. Pourquie, and H. J. J. Jonker, 2016: Stable stratification effects on flow and pollutant dispersion in boundary layers entering a generic urban environment. Bound.-Layer Meteor., 159, 221239, https://doi.org/10.1007/s10546-015-0124-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Uehara, K., S. Murakami, S. Oikawa, and S. Wakamatsu, 2000: Wind tunnel experiments on how thermal stratification affects flow in and above urban street canyons. Atmos. Environ., 34, 15531562, https://doi.org/10.1016/S1352-2310(99)00410-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van der Linden, S. J. A., and Coauthors, 2019: Large-eddy simulations of the steady wintertime Antarctic boundary layer. Bound.-Layer Meteor., 173, 165192, https://doi.org/10.1007/s10546-019-00461-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115, https://doi.org/10.1175/JAS-D-12-064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoef, A., H. A. R. De Bruin, and B. J. J. M. Van Den Hurk, 1997: Some practical notes on the parameter kB−1 for sparse vegetation. J. Appl. Meteor. Climatol., 36, 560572, https://doi.org/10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and O. R. Coté, 1972: Cospectral similarity in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 98, 590603, https://doi.org/10.1002/qj.49709841708.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., and I. P. Castro, 2006: LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul. Combust., 76, 291312, https://doi.org/10.1007/s10494-006-9018-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, Z., P. Hayden, and C. R. Wood, 2013: Large-eddy simulation of approaching-flow stratification on dispersion over arrays of buildings. Atmos. Environ., 71, 6474, https://doi.org/10.1016/j.atmosenv.2013.01.054.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, R., and M. A. Friedl, 2003: Determination of roughness lengths for heat and momentum over boreal forests. Bound.-Layer Meteor., 107, 581603, https://doi.org/10.1023/A:1022880530523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., 1995: Non-local turbulent transport: Pollution dispersion aspects of coherent structure of connective flows. WIT Trans. Ecol. Environ., 9, 5360, https://doi.org/10.2495/AIR950071.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., I. Mammarella, A. A. Baklanov, and S. M. Joffre, 2008a: The effect of stratification on the aerodynamic roughness length and displacement height. Bound.-Layer Meteor., 129, 179190, https://doi.org/10.1007/s10546-008-9307-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008b: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799, https://doi.org/10.1002/qj.264.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S., T. Elperin, N. Kleeorin, I. Rogachevskii, and I. Esau, 2013: A hierarchy of energy-and flux-budget (EFB) turbulence closure models for stably-stratified geophysical flows. Bound.-Layer Meteor., 146, 341373, https://doi.org/10.1007/s10546-012-9768-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 595 595 23
Full Text Views 154 154 2
PDF Downloads 172 172 3

Studies of Stable Stratification Effect on Dynamic and Thermal Roughness Lengths of Urban-Type Canopy Using Large-Eddy Simulation

Andrey GlazunovaMarchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
bResearch Computing Center, Lomonosov Moscow State University, Moscow, Russia
dMoscow Center for Fundamental and Applied Mathematics, Moscow, Russia

Search for other papers by Andrey Glazunov in
Current site
Google Scholar
PubMed
Close
,
Evgeny MortikovbResearch Computing Center, Lomonosov Moscow State University, Moscow, Russia
aMarchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Evgeny Mortikov in
Current site
Google Scholar
PubMed
Close
, and
Andrey DebolskiybResearch Computing Center, Lomonosov Moscow State University, Moscow, Russia
cA. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

Search for other papers by Andrey Debolskiy in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Large-eddy simulations (LES) of neutrally and stably stratified turbulent flows over urban-type surfaces with relatively low plan area ratios are presented. Numerical experiments were performed for different shapes of streamlined objects and at different static stability. A new method for setting up a numerical experiment aimed at studying the heat and momentum transfer within the roughness layer and investigating the thermal and dynamic interaction between the turbulent flow and the surface as a whole has been proposed. This method enables us to obtain an equilibrium state for values of parameters determining the characteristics of the external turbulent flow chosen beforehand. A strong dependence of the thermal roughness length on stratification was found. We also discuss the physical mechanisms that lead to the maintenance of turbulence above the canopy when the ground surface is strongly cooled.

Significance Statement

Using LES, we identify a mechanism that contributes to the maintenance of turbulence in the atmospheric boundary layer under the condition of strong surface cooling. Although these results are obtained for an urban canopy, we believe that the qualitative conclusions should be general for a wide type of surfaces with large-scale roughness elements. We hope that the new results will be useful for improving surface flux schemes in NWP and climate atmospheric models that suffer from attenuated mixing in a very stable boundary layer and the effect of “surface decoupling.” The found effect gives a physically justified alternative way to parameterize the air–surface exchange under strong stability compared to the often ad hoc modification of the MOST universal functions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrey Glazunov, glas@gmail.com

Abstract

Large-eddy simulations (LES) of neutrally and stably stratified turbulent flows over urban-type surfaces with relatively low plan area ratios are presented. Numerical experiments were performed for different shapes of streamlined objects and at different static stability. A new method for setting up a numerical experiment aimed at studying the heat and momentum transfer within the roughness layer and investigating the thermal and dynamic interaction between the turbulent flow and the surface as a whole has been proposed. This method enables us to obtain an equilibrium state for values of parameters determining the characteristics of the external turbulent flow chosen beforehand. A strong dependence of the thermal roughness length on stratification was found. We also discuss the physical mechanisms that lead to the maintenance of turbulence above the canopy when the ground surface is strongly cooled.

Significance Statement

Using LES, we identify a mechanism that contributes to the maintenance of turbulence in the atmospheric boundary layer under the condition of strong surface cooling. Although these results are obtained for an urban canopy, we believe that the qualitative conclusions should be general for a wide type of surfaces with large-scale roughness elements. We hope that the new results will be useful for improving surface flux schemes in NWP and climate atmospheric models that suffer from attenuated mixing in a very stable boundary layer and the effect of “surface decoupling.” The found effect gives a physically justified alternative way to parameterize the air–surface exchange under strong stability compared to the often ad hoc modification of the MOST universal functions.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrey Glazunov, glas@gmail.com
Save