• Durran, D. R., P. A. Reinecke, and J. D. Doyle, 2013: Large-scale errors and mesoscale predictability in Pacific Northwest snowstorms. J. Atmos. Sci., 70, 14701487, https://doi.org/10.1175/JAS-D-12-0202.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., J. A. Weyn, and M. Q. Menchaca, 2017: Practical considerations for computing dimensional spectra from gridded data. Mon. Wea. Rev., 145, 39013910, https://doi.org/10.1175/MWR-D-17-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 15541562, https://doi.org/10.1175/1520-0493(1985)113<1554:SCFALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2018: Insights into atmospheric predictability through global convection-permitting model simulations. J. Atmos. Sci., 75, 14771497, https://doi.org/10.1175/JAS-D-17-0343.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Judt, F., 2020: Atmospheric predictability of the tropics, middle latitudes, and polar regions explored through global storm-resolving simulations. J. Atmos. Sci., 77, 257276, https://doi.org/10.1175/JAS-D-19-0116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lesieur, M., 2008: Turbulence in Fluids. 4th ed. Springer, 558 pp.

    • Crossref
    • Export Citation
  • Lloveras, D. J., L. H. Tierney, and D. R. Durran, 2021: Mesoscale predictability in moist midlatitude cyclones is not sensitive to the slope of the background kinetic energy spectrum. J. Atmos. Sci., 79, 119139, https://doi.org/10.1175/JAS-D-21-0147.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, https://doi.org/10.3402/tellusa.v21i3.10086.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., S. Tulich, T. Nasuno, and M. Satoh, 2008: Predictability aspects of global aqua-planet simulations with explicit convection. J. Meteor. Soc. Japan, 86A, 175185, https://doi.org/10.2151/jmsj.86A.175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McWilliams, M. C., and J. H. S. Chow, 1981: Equilibrium geostrophic turbulence I: A reference solution in a V-plane channel. J. Phys. Oceanogr., 11, 921949, https://doi.org/10.1175/1520-0485(1981)011<0921:EGTIAR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 2007: Numerical Recipes in C: The Art of Scientific Computing. 3rd ed. Cambridge University Press, 1256 pp.

  • Rotunno, R., and C. Snyder, 2008: A generalization of Lorenz’s model for the predictability of flows with many scales of motion. J. Atmos. Sci., 65, 10631076, https://doi.org/10.1175/2007JAS2449.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snyder, C., T. M. Hamill, and S. B. Trier, 2003: Linear evolution of error covariances in a quasigeostrophic model. Mon. Wea. Rev., 131, 189205, https://doi.org/10.1175/1520-0493(2003)131<0189:LEOECI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weyn, W. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 21912210, https://doi.org/10.1175/JAS-D-17-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wieczorek, M. A., and F. J. Simons, 2005: Localized spectral analysis on the sphere. Geophys. J. Int., 162, 655675, https://doi.org/10.1111/j.1365-246X.2005.02687.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wong, M., and W. C. Skamarock, 2016: Spectral characteristics of convective-scale precipitation observations and forecasts. Mon. Wea. Rev., 144, 41834196, https://doi.org/10.1175/MWR-D-16-0183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and R. Rotunno, 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, https://doi.org/10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 567 567 16
Full Text Views 247 247 12
PDF Downloads 295 295 18

Upscale versus “Up-Amplitude” Growth of Forecast-Error Spectra

Richard RotunnoaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Richard Rotunno in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3906-8785
,
Chris SnyderaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Chris Snyder in
Current site
Google Scholar
PubMed
Close
, and
Falko JudtaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Falko Judt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Atmospheric predictability is measured by the average difference (or “error”) within an ensemble of forecasts starting from slightly different initial conditions. The spatial scale of the error field is a fundamental quantity; for meteorological applications, the error field typically varies with latitude and longitude and so requires a two-dimensional (2D) spectral analysis. Statistical predictability theory is based on the theory of homogeneous, isotropic turbulence, in which spectra are circularly symmetric in 2D wavenumber space. One takes advantage of this circular symmetry to reduce 2D spectra to one-dimensional (1D) spectra by integrating around a circle in wavenumber polar coordinates. In recent studies it has become common to reduce 2D error spectra to 1D by computing spectra in the zonal direction and then averaging the results over latitude. It is shown here that such 1D error spectra are generically fairly constant across the low wavenumbers as the amplitude of an error spectrum grows with time and therefore the error spectrum is said grow “up-amplitude.” In contrast computing 1D error spectra in a manner consistent with statistical predictability theory gives spectra that are peaked at intermediate wavenumbers. In certain cases, this peak wavenumber is decreasing with time as the error at that wavenumber increases and therefore the error spectrum is said to grow “upscale.” We show through theory, simple examples, and global predictability experiments that comparisons of model error spectra with the predictions of statistical predictability theory are only justified when using a theory-consistent method to transform a 2D error field to a 1D spectrum.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Rotunno, rotunno@ucar.edu

Abstract

Atmospheric predictability is measured by the average difference (or “error”) within an ensemble of forecasts starting from slightly different initial conditions. The spatial scale of the error field is a fundamental quantity; for meteorological applications, the error field typically varies with latitude and longitude and so requires a two-dimensional (2D) spectral analysis. Statistical predictability theory is based on the theory of homogeneous, isotropic turbulence, in which spectra are circularly symmetric in 2D wavenumber space. One takes advantage of this circular symmetry to reduce 2D spectra to one-dimensional (1D) spectra by integrating around a circle in wavenumber polar coordinates. In recent studies it has become common to reduce 2D error spectra to 1D by computing spectra in the zonal direction and then averaging the results over latitude. It is shown here that such 1D error spectra are generically fairly constant across the low wavenumbers as the amplitude of an error spectrum grows with time and therefore the error spectrum is said grow “up-amplitude.” In contrast computing 1D error spectra in a manner consistent with statistical predictability theory gives spectra that are peaked at intermediate wavenumbers. In certain cases, this peak wavenumber is decreasing with time as the error at that wavenumber increases and therefore the error spectrum is said to grow “upscale.” We show through theory, simple examples, and global predictability experiments that comparisons of model error spectra with the predictions of statistical predictability theory are only justified when using a theory-consistent method to transform a 2D error field to a 1D spectrum.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Richard Rotunno, rotunno@ucar.edu
Save