• Biernat, K. A., L. F. Bosart, and D. Keyser, 2021: A climatological analysis of the linkages between tropopause polar vortices, cold pools, and cold air outbreaks over the central and eastern United States. Mon. Wea. Rev., 149, 189206, https://doi.org/10.1175/MWR-D-20-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., G. J. Hakim, K. R. Tyle, M. A. Bedrick, W. E. Bracken, M. J. Dickinson, and D. M. Schultz, 1996: Large-scale antecedent conditions associated with the 12–14 March 1993 cyclone (“Superstorm ’93”) over eastern North America. Mon. Wea. Rev., 124, 18651891, https://doi.org/10.1175/1520-0493(1996)124<1865:LSACAW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bray, M. T., and S. M. Cavallo, 2022: Characteristics of long-track tropopause polar vortices. Wea. Climate Dyn., 3, 251–278, https://doi.org/10.5194/wcd-3-251-2022.

    • Crossref
    • Export Citation
  • Campbell, I. B., and G. G. C. Claridge, 1987: Antarctica: Soils, Weathering Processes and Environment. Elsevier, 367 pp.

    • Crossref
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2009: Potential vorticity diagnosis of a tropopause polar cyclone. Mon. Wea. Rev., 137, 13581371, https://doi.org/10.1175/2008MWR2670.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2012: Radiative impact on tropopause polar vortices over the Arctic. Mon. Wea. Rev., 140, 16831702, https://doi.org/10.1175/MWR-D-11-00182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2013: The physical mechanisms of tropopause polar cyclone intensity change. J. Atmos. Sci., 70, 33593373, https://doi.org/10.1175/JAS-D-13-088.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chien, F.-C., and C. F. Mass, 1997: Interaction of a warm-season frontal system with the coastal mountains of the western United States. Part II: Evolution of a Puget Sound convergence zone. Mon. Wea. Rev., 125, 17301752, https://doi.org/10.1175/1520-0493(1997)125<1730:IOAWSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., 2000: Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J. Climate, 13, 16741696, https://doi.org/10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., O. Martinez-Alvarado, and C. O. Mbengue, 2019: Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeor., 20, 11831196, https://doi.org/10.1175/JHM-D-18-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeConto, R. M., and D. Pollard, 2016: Contribution of Antarctica to past and future sea-level rise. Nature, 531, 591597, https://doi.org/10.1038/nature17145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51 A, 728748, https://doi.org/10.3402/tellusa.v51i5.14471.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebner, L., G. Heinemann, V. Haid, and R. Timmermann, 2014: Katabatic winds and polynya dynamics at Coats Land, Antarctica. Antarct. Sci., 26, 309326, https://doi.org/10.1017/S0954102013000679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, T. L., and Coauthors, 2019: Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature, 566, 5864, https://doi.org/10.1038/s41586-019-0901-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, T. L., and Coauthors, 2021: Projected land ice contributions to twenty-first-century sea level rise. Nature, 593, 7482, https://doi.org/10.1038/s41586-021-03302-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., 2000: Climatology of coherent structures on the extratropical tropopause. Mon. Wea. Rev., 128, 385406, https://doi.org/10.1175/1520-0493(2000)128<0385:COCSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hakim, G. J., and A. K. Canavan, 2005: Observed cyclone–anticyclone tropopause asymmetries. J. Atmos. Sci., 62, 231240, https://doi.org/10.1175/JAS-3353.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, https://doi.org/10.1002/qj.49709942003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hepworth, E., G. Messori, and M. Vichi, 2022: Association between extreme atmospheric anomalies over Antarctic sea ice, Southern Ocean polar cyclones and atmospheric rivers. J. Geophys. Res. Atmos., 127, e2021JD036121, https://doi.org/10.1029/2021JD036121.

    • Crossref
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jung, T., and P. B. Rhines, 2007: Greenland’s pressure drag and the Atlantic storm track. J. Atmos. Sci., 64, 40044030, https://doi.org/10.1175/2007JAS2216.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lillo, S. P., S. M. Cavallo, D. B. Parsons, and C. Riedel, 2021: The role of a tropopause polar vortex in the generation of the January 2019 extreme Arctic outbreak. J. Atmos. Sci., 78, 2801–2821, https://doi.org/10.1175/JAS-D-20-0285.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim data set (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Massey, F. J., Jr., 1951: The Kolmogorov–Smirnov test for goodness of fit. J. Amer. Stat. Assoc., 46, 6878, https://doi.org/10.2307/2280095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ndarana, T., and D. W. Waugh, 2011: A climatology of Rossby wave breaking on the Southern Hemisphere tropopause. J. Atmos. Sci., 68, 798811, https://doi.org/10.1175/2010JAS3460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nigro, M. A., and J. J. Cassano, 2014: Identification of surface wind patterns over the Ross Ice Shelf, Antarctica, using self-organizing maps. Mon. Wea. Rev., 142, 23612378, https://doi.org/10.1175/MWR-D-13-00382.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and D. H. Bromwich, 2007: Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon. Wea. Rev., 135, 19611973, https://doi.org/10.1175/MWR3374.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parish, T. R., J. J. Cassano, and M. W. Seefeldt, 2006: Characteristics of the Ross Ice Shelf air stream as depicted in Antarctic mesoscale prediction system simulations. J. Geophys. Res., 111, D12109, https://doi.org/10.1029/2005JD006185.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., H. Ólafsson, and J. E. Kristjánsson, 2003: Flow in the lee of idealized mountains and Greenland. J. Atmos. Sci., 60, 21832195, https://doi.org/10.1175/1520-0469(2003)060<2183:FITLOI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pezza, A., K. Sadler, P. Uotila, T. Vihma, M. D. S. Mesquita, and P. Reid, 2016: Southern Hemisphere strong polar mesoscale cyclones in high-resolution datasets. Climate Dyn., 47, 16471660, https://doi.org/10.1007/s00382-015-2925-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pohl, B., and Coauthors, 2021: Relationship between weather regimes and atmospheric rivers in East Antarctica. J. Geophys. Res. Atmos., 126, e2021JD035294, https://doi.org/10.1029/2021JD035294.

    • Crossref
    • Export Citation
  • Pyle, M. E., D. Keyser, and L. F. Bosart, 2004: A diagnostic study of jet streaks: Kinematic signatures and relationship to coherent tropopause disturbances. Mon. Wea. Rev., 132, 297319, https://doi.org/10.1175/1520-0493(2004)132<0297:ADSOJS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riedel, C. P., S. M. Cavallo, and D. B. Parsons, 2021: Mesoscale prediction in the Antarctic using cycled ensemble data assimilation. Mon. Wea. Rev., 149, 443462, https://doi.org/10.1175/MWR-D-20-0009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schär, C., and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, 13731400, https://doi.org/10.1175/1520-0469(1993)050<1373:SWFPIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schlosser, E., K. W. Manning, J. G. Powers, M. G. Duda, G. Birnbaum, and K. Fujita, 2010: Characteristics of high-precipitation events in Dronning Maud Land, Antarctica. J. Geophys. Res., 115, D14107, https://doi.org/10.1029/2009JD013410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seefeldt, M. W., and J. J. Cassano, 2012: A description of the Ross Ice Shelf air stream (RAS) through the use of self-organizing maps (SOMs). J. Geophys. Res., 117, D09112, https://doi.org/10.1029/2011JD016857.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seroussi, H., and Coauthors, 2020: ISMIP6 Antarctica: A multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. Cryosphere, 14, 30333070, https://doi.org/10.5194/tc-14-3033-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2014: The Arctic Climate System. 2nd ed. Cambridge University Press, 404 pp.

    • Crossref
    • Export Citation
  • Shepherd, A., H. A. Fricker, and S. L. Farrell, 2018: Trends and connections across the Antarctic cryosphere. Nature, 558, 223232, https://doi.org/10.1038/s41586-018-0171-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2014: A comparison of tracking methods for extreme cyclones in the Arctic basin. Tellus, 66A, 25252, https://doi.org/10.3402/tellusa.v66.25252.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., K. Keay, and E.-P. Lim, 2003: Synoptic activity in the seas around Antarctica. Mon. Wea. Rev., 131, 272288, https://doi.org/10.1175/1520-0493(2003)131<0272:SAITSA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophys., Vol. 21, Academic Press, 87–230, https://doi.org/10.1016/S0065-2687(08)60262-9.

    • Crossref
    • Export Citation
  • Smith, R. B., 1982: Synoptic observations and theory of orographically disturbed wind and pressure. J. Atmos. Sci., 39, 6070, https://doi.org/10.1175/1520-0469(1982)039<0060:SOATOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spensberger, C., and T. Spengler, 2020: Feature-based jet variability in the upper troposphere. J. Climate, 33, 68496871, https://doi.org/10.1175/JCLI-D-19-0715.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sprenger, M., and Coauthors, 2017: Global climatologies of Eulerian and Lagrangian flow features based on ERA-Interim. Bull. Amer. Meteor. Soc., 98, 17391748, https://doi.org/10.1175/BAMS-D-15-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sutter, J., P. Gierz, K. Grosfeld, M. Thoma, and G. Lohmann, 2016: Ocean temperature thresholds for last interglacial West Antarctic ice sheet collapse. Geophys. Res. Lett., 43, 26752682, https://doi.org/10.1002/2016GL067818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szapiro, N., and S. Cavallo, 2018: Tpvtrack (v1.0): A watershed segmentation and overlap correspondence method for tracking tropopause polar vortices. Geosci. Model Dev., 11, 51735187, https://doi.org/10.5194/gmd-11-5173-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, J., and Coauthors, 2019: The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett., 46, 35023511, https://doi.org/10.1029/2018GL081517.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., T. Vihma, A. B. Pezza, I. Simmonds, K. Keay, and A. H. Lynch, 2011: Relationships between Antarctic cyclones and surface conditions as derived from high-resolution numerical weather prediction data. J. Geophys. Res., 116, D07109, https://doi.org/10.1029/2010JD015358.

    • Search Google Scholar
    • Export Citation
  • Uotila, P., T. Vihma, and M. Tsukernik, 2013: Close interactions between the Antarctic cyclone budget and large-scale atmospheric circulation. Geophys. Res. Lett., 40, 32373241, https://doi.org/10.1002/grl.50560.

    • Search Google Scholar
    • Export Citation
  • Vessey, A. F., K. I. Hodges, L. C. Shaffrey, and J. J. Day, 2020: An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dyn., 54, 27772795, https://doi.org/10.1007/s00382-020-05142-4.

    • Search Google Scholar
    • Export Citation
  • Walton, D. W. H., 2013: Antarctica: Global Science from a Frozen Continent. Cambridge University Press, 342 pp.

  • Wille, J. D., and Coauthors, 2021: Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos., 126, e2020JD033788, https://doi.org/10.1029/2020JD033788.

  • Xie, A., and Coauthors, 2016: Can temperature extremes in east Antarctica be replicated from ERA-Interim reanalysis? Arct. Antarct. Alp. Res., 48, 603621, https://doi.org/10.1657/AAAR0015-048.

    • Search Google Scholar
    • Export Citation
  • Yu, L., and S. Zhong, 2019: The interannual variability of surface winds in Antarctica and the surrounding oceans: A climatological analysis using the ERA-Interim reanalysis data. J. Geophys. Res. Atmos., 124, 90469061, https://doi.org/10.1029/2019JD030328.

    • Search Google Scholar
    • Export Citation
  • Zängl, G., and K. P. Hoinka, 2001: The tropopause in the polar regions. J. Climate, 14, 31173139, https://doi.org/10.1175/1520-0442(2001)014<3117:TTITPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Weng, J. F. Gamache, and F. D. Marks, 2011: Performance of convective-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, https://doi.org/10.1029/2011GL048469.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 598 598 40
Full Text Views 198 198 13
PDF Downloads 211 211 18

Evaluating Common Characteristics of Antarctic Tropopause Polar Vortices

Andrea E. GordonaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Andrea E. Gordon in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9002-6973
,
Steven M. CavalloaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Steven M. Cavallo in
Current site
Google Scholar
PubMed
Close
, and
Amanda K. NovakaSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Amanda K. Novak in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropopause polar vortices (TPVs) are coherent circulations that occur over polar regions and can be identified by a local minimum in potential temperature and local maximum in potential vorticity. Numerous studies have focused on TPVs in the Arctic region; however, no previous studies have focused on the Antarctic. Given the role of TPVs in the Northern Hemisphere with surface cyclones and other extreme weather, and the role that surface cyclones can play on moisture transport and sea ice breakup, it is important to understand whether similar associations exist in the Southern Hemisphere. Here, characteristics of TPVs in the Antarctic are evaluated for the first time under the hypothesis that their characteristics do not significantly differ from those of the Northern Hemisphere. To improve understanding of Antarctic TPV characteristics, this study examines TPVs of the Southern Hemisphere and compares them to their Northern Hemisphere counterparts from 1979 to 2018 using ERA-Interim data. Common characteristics of TPVs including frequency, locations, lifetimes, strength, and seasonality are evaluated. Results indicate that topography correlates to the geographic distribution of TPVs and the locations of local maxima TPV occurrence, as observed in the Northern Hemisphere. Additionally, TPVs in the Southern Hemisphere exhibit seasonal variations for amplitude, lifetime, and minimum potential temperature. Southern Hemisphere TPVs share many similar characteristics to those observed in the Northern Hemisphere, including longer summer lifetimes. The association of Southern Hemisphere TPVs and surface cyclone frequency is explored, and it appears that TPVs have a precursory role to surface cyclones, as seen in the Northern Hemisphere.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrea E. Gordon, agordon@ou.edu

Abstract

Tropopause polar vortices (TPVs) are coherent circulations that occur over polar regions and can be identified by a local minimum in potential temperature and local maximum in potential vorticity. Numerous studies have focused on TPVs in the Arctic region; however, no previous studies have focused on the Antarctic. Given the role of TPVs in the Northern Hemisphere with surface cyclones and other extreme weather, and the role that surface cyclones can play on moisture transport and sea ice breakup, it is important to understand whether similar associations exist in the Southern Hemisphere. Here, characteristics of TPVs in the Antarctic are evaluated for the first time under the hypothesis that their characteristics do not significantly differ from those of the Northern Hemisphere. To improve understanding of Antarctic TPV characteristics, this study examines TPVs of the Southern Hemisphere and compares them to their Northern Hemisphere counterparts from 1979 to 2018 using ERA-Interim data. Common characteristics of TPVs including frequency, locations, lifetimes, strength, and seasonality are evaluated. Results indicate that topography correlates to the geographic distribution of TPVs and the locations of local maxima TPV occurrence, as observed in the Northern Hemisphere. Additionally, TPVs in the Southern Hemisphere exhibit seasonal variations for amplitude, lifetime, and minimum potential temperature. Southern Hemisphere TPVs share many similar characteristics to those observed in the Northern Hemisphere, including longer summer lifetimes. The association of Southern Hemisphere TPVs and surface cyclone frequency is explored, and it appears that TPVs have a precursory role to surface cyclones, as seen in the Northern Hemisphere.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Andrea E. Gordon, agordon@ou.edu
Save