• Addoum, A., O. Farges, and F. Asllanaj, 2018: Optical properties reconstruction using the adjoint method based on the radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 204, 179189, https://doi.org/10.1016/j.jqsrt.2017.09.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, M. A., and C. Sendra, 1995: Sensitivity of exiting radiances to details of the scattering phase function. J. Quant. Spectrosc. Radiat. Transfer, 54, 695703, https://doi.org/10.1016/0022-4073(95)00091-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, M. A., and C. Sendra, 1999: Retrieval of the albedo and phase function from exiting radiances with radiative perturbation theory. Appl. Opt., 38, 16361643, https://doi.org/10.1364/AO.38.001636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Box, M. A., S. A. W. Gerstl, and C. Simmer, 1988: Application of the adjoint formulation to the calculation of atmospheric radiative effects. Contrib. Atmos. Phys., 61, 303311.

    • Search Google Scholar
    • Export Citation
  • Box, M. A., S. A. W. Gerstl, and C. Simmer, 1989: Computation of atmospheric radiative effects via perturbation theory. Contrib. Atmos. Phys., 62, 193199.

    • Search Google Scholar
    • Export Citation
  • Carter, L. L., H. G. Horak, and M. T. Sandford, 1978: An adjoint Monte Carlo treatment of the equations of radiative transfer for polarized light. J. Comput. Phys., 26, 119138, https://doi.org/10.1016/0021-9991(78)90085-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chowdhary, J., P.-W. Zhai, F. Xu, R. Frouin, and D. Ramon, 2020: Testbed results for scalar and vector radiative transfer computations of light in atmosphere-ocean systems. J. Quant. Spectrosc. Radiat. Transfer, 242, 106717, https://doi.org/10.1016/j.jqsrt.2019.106717.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, D., S. Stamnes, T. Tanikawa, E. R. Sommersten, J. J. Stamnes, J. K. Lotsberg, and K. Stamnes, 2013: Comparison of discrete ordinate and Monte Carlo simulations of polarized radiative transfer in two coupled slabs with different refractive indices. Opt. Express, 21, 95929614, https://doi.org/10.1364/OE.21.009592.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Courtier, P., J. Derber, R. Errico, J.-F. Louis, and T. Vukićević, 1993: Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology. Tellus, 45A, 342357, https://doi.org/10.3402/tellusa.v45i5.14898.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C., and W. Munk, 1954: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Amer., 44, 838850, https://doi.org/10.1364/JOSA.44.000838.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Haan, J. F., P. B. Bosma, and J. W. Hovenier, 1987: The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183, 371391.

    • Search Google Scholar
    • Export Citation
  • Ding, J., P. Yang, M. D. King, S. Platnick, X. Liu, K. G. Meyer, and C. Wang, 2019: A fast vector radiative transfer model for the atmosphere-ocean coupled system. J. Quant. Spectrosc. Radiat. Transfer, 239, 106667, https://doi.org/10.1016/j.jqsrt.2019.106667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emde, C., R. Buras, and B. Mayer, 2011: ALIS: An efficient method to compute high spectral resolution polarized solar radiances using the Monte Carlo approach. J. Quant. Spectrosc. Radiat. Transfer, 112, 16221631, https://doi.org/10.1016/j.jqsrt.2011.03.018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1997: What is an adjoint model? Bull. Amer. Meteor. Soc., 78, 25772591, https://doi.org/10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and T. Vukićević, 1992: Sensitivity analysis using an adjoint of the PSU–NCAR Mesoscale Model. Mon. Wea. Rev., 120, 16441660, https://doi.org/10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., and K. D. Raeder, 1999: An examination of the accuracy of the linearization of a mesoscale model with moist physics. Quart. J. Roy. Meteor. Soc., 125, 169195, https://doi.org/10.1002/qj.49712555310.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Errico, R. M., T. Vukićević, and K. Raeder, 1993: Examination of the accuracy of a tangent linear model. Tellus, 45A, 462477, https://doi.org/10.3402/tellusa.v45i5.15046.

    • Search Google Scholar
    • Export Citation
  • Evans, K. F., 2007: SHDOMPPDA: A radiative transfer model for cloudy sky data assimilation. J. Atmos. Sci., 64, 38543864, https://doi.org/10.1175/2006JAS2047.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, K. F., and G. L. Stephens, 1991: A new polarized atmospheric radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 46, 413423, https://doi.org/10.1016/0022-4073(91)90043-P.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frouin, R., M. Schwindling, and P.-Y. Deschamps, 1996: Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. J. Geophys. Res., 101, 14 36114 371, https://doi.org/10.1029/96JC00629.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, M., and Coauthors, 2021: Adaptive data screening for multi-angle polarimetric aerosol and ocean color remote sensing accelerated by deep learning. Front. Remote Sens., 2, 757832, https://doi.org/10.3389/frsen.2021.757832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474, https://doi.org/10.1145/293686.293695.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grainger, R. G., J. Lucas, G. E. Thomas, and G. B. L. Ewen, 2004: Calculation of Mie derivatives. Appl. Opt., 43, 53865393, https://doi.org/10.1364/AO.43.005386.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Griewank, A., and A. Walther, 2008: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. 2nd ed. Society for Industrial and Applied Mathematics, 460 pp.

    • Crossref
    • Export Citation
  • Hasekamp, O. P., and J. Landgraf, 2002: A linearized vector radiative transfer model for atmospheric trace gas retrieval. J. Quant. Spectrosc. Radiat. Transfer, 75, 221238, https://doi.org/10.1016/S0022-4073(01)00247-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasekamp, O. P., and J. Landgraf, 2005: Linearization of vector radiative transfer with respect to aerosol properties and its use in satellite remote sensing. J. Geophys. Res., 110, D04203, https://doi.org/10.1029/2004JD005260.

    • Search Google Scholar
    • Export Citation
  • Hovenier, J. W., C. Van Der Mee, and H. Domke, 2004: Transfer of Polarized Light in Planetary Atmospheres. Springer, 258 pp.

    • Crossref
    • Export Citation
  • Huang, X., P. Yang, G. Kattawar, and K.-N. Liou, 2015: Effect of mineral dust aerosol aspect ratio on polarized reflectance. J. Quant. Spectrosc. Radiat. Transfer, 151, 97109, https://doi.org/10.1016/j.jqsrt.2014.09.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaminski, T., M. Heimann, and R. Giering, 1999: A coarse grid three-dimensional global inverse model of the atmospheric transport 1. Adjoint model and Jacobian matrix. J. Geophys. Res., 104, 18 53518 553, https://doi.org/10.1029/1999JD900147.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kattawar, G. W., G. N. Plass, and S. J. Hitzfelder, 1976: Multiple scattered radiation emerging from Rayleigh and continental haze layers 1: Radiance, polarization, and neutral points. Appl. Opt., 15, 632647, https://doi.org/10.1364/AO.15.000632.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klose, A. D., V. Ntziachristos, and A. H. Hielscher, 2005: The inverse source problem based on the radiative transfer equation in optical molecular imaging. J. Comput. Phys., 202, 323345, https://doi.org/10.1016/j.jcp.2004.07.008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koepke, P., 1984: Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 18161824, https://doi.org/10.1364/AO.23.001816.

  • Kokhanovsky, A. A., and Coauthors, 2010: Benchmark results in vector atmospheric radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 111, 19311946, https://doi.org/10.1016/j.jqsrt.2010.03.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korkin, S., and A. Lyapustin, 2019: Matrix exponential in C/C++ version of vector radiative transfer code IPOL. J. Quant. Spectrosc. Radiat. Transfer, 227, 106110, https://doi.org/10.1016/j.jqsrt.2019.02.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Korkin, S., A. Lyapustin, A. Sinyuk, B. Holben, and A. Kokhanovsky, 2017: Vector radiative transfer code SORD: Performance analysis and quick start guide. J. Quant. Spectrosc. Radiat. Transfer, 200, 295310, https://doi.org/10.1016/j.jqsrt.2017.04.035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40A, 8195, https://doi.org/10.1111/j.1600-0870.1988.tb00408.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lacis, A. A., J. Chowdhary, M. I. Mishchenko, and B. Cairns, 1998: Modeling errors in diffuse-sky radiation: Vector vs. scalar treatment. Geophys. Res. Lett., 25, 135138, https://doi.org/10.1029/97GL03613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landgraf, J., O. P. Hasekamp, M. A. Box, and T. Trautmann, 2001: A linearized radiative transfer model for ozone profile retrieval using the analytical forward-adjoint perturbation theory approach. J. Geophys. Res., 106, 27 29127 305, https://doi.org/10.1029/2001JD000636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landgraf, J., O. P. Hasekamp, and T. Trautmann, 2002: Linearization of radiative transfer with respect to surface properties. J. Quant. Spectrosc. Radiat. Transfer, 72, 327339, https://doi.org/10.1016/S0022-4073(01)00126-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenoble, J., M. Herman, J. L. Deuzé, B. Lafrance, R. Santer, and D. Tanré, 2007: A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transfer, 107, 479507, https://doi.org/10.1016/j.jqsrt.2007.03.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, Y., and N. Bowler, 2013: Computation of Mie derivatives. Appl. Opt., 52, 49975006, https://doi.org/10.1364/AO.52.004997.

  • Liu, Q., and F. Weng, 2006: Advanced doubling-adding method for radiative transfer in planetary atmospheres. J. Atmos. Sci., 63, 34593465, https://doi.org/10.1175/JAS3808.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and F. Weng, 2013: Using Advanced Matrix Operator (AMOM) in Community Radiative Transfer Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 6, 12111218, https://doi.org/10.1109/JSTARS.2013.2247026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liu, Q., and C. Cao, 2019: Analytic expressions of the transmission, reflection, and source function for the Community Radiative Transfer Model. J. Quant. Spectrosc. Radiat. Transfer, 226, 115126, https://doi.org/10.1016/j.jqsrt.2019.01.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahfouf, J. F., 1999: Influence of physical processes on the tangent-linear approximation. Tellus, 51A, 147166, https://doi.org/10.3402/tellusa.v51i2.12312.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maignan, F., F.-M. Bréon, E. Fédèle, and M. Bouvier, 2009: Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling. Remote Sens. Environ., 113, 26422650, https://doi.org/10.1016/j.rse.2009.07.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Masuda, K., 1998: Effects of the speed and direction of surface winds on the radiation in the atmosphere–ocean system. Remote Sens. Environ., 64, 5363, https://doi.org/10.1016/S0034-4257(97)00168-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., and L. C. Harrison, 1996: An adjoint formulation of the radiative transfer method. J. Geophys. Res., 101, 16351640, https://doi.org/10.1029/95JD03424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Min, Q., and M. Duan, 2004: A successive order of scattering model for solving vector radiative transfer in the atmosphere. J. Quant. Spectrosc. Radiat. Transfer, 87, 243259, https://doi.org/10.1016/j.jqsrt.2003.12.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., and I. Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 20942099, https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ota, Y., A. Higurashi, T. Nakajima, and T. Yokota, 2010: Matrix formulations of radiative transfer including the polarization effect in a coupled atmosphere–ocean system. J. Quant. Spectrosc. Radiat. Transfer, 111, 878894, https://doi.org/10.1016/j.jqsrt.2009.11.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, S. K., and K. K. Droegemeier, 1997: Validity of the tangent linear approximation in a moist convective cloud model. Mon. Wea. Rev., 125, 33203340, https://doi.org/10.1175/1520-0493(1997)125<3320:VOTTLA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2017: The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens., 55, 502525, https://doi.org/10.1109/TGRS.2016.2610522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, J., S. Liang, X. Li, and J. Wang, 2008: Development of the adjoint model of a canopy radiative transfer model for sensitivity study and inversion of leaf area index. IEEE Trans. Geosci. Remote Sens., 46, 20282037, https://doi.org/10.1109/TGRS.2008.916637.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remizovich, V., and S. A. Shekhmamet’ev, 1990: Diffusive propagation of radiation in an absorbing dispersion medium with highly elongated scattering indicatrix in the case of an obliquely incident broad beam. Radiophys. Quantum Electron., 33, 156165, https://doi.org/10.1007/BF01040817.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, C. D., 2000: Inverse Methods for Atmospheric Sounding. World Scientific, 258 pp.

    • Crossref
    • Export Citation
  • Rozanov, V. V., and A. A. Kokhanovsky, 2006: The solution of the vector radiative transfer equation using the discrete ordinates technique: Selected applications. Atmos. Res., 79, 241265, https://doi.org/10.1016/j.atmosres.2005.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozanov, V. V., and A. V. Rozanov, 2007: Generalized form of the direct and adjoint radiative transfer equations. J. Quant. Spectrosc. Radiat. Transfer, 104, 155170, https://doi.org/10.1016/j.jqsrt.2006.08.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, M., P. Yang, J. Ding, and X. Liu, 2021: A comprehensive database of the optical properties of irregular aerosol particles for radiative transfer simulations. J. Atmos. Sci., 78, 20892111, https://doi.org/10.1175/JAS-D-20-0338.1.

    • Search Google Scholar
    • Export Citation
  • Sancer, M., 1969: Shadow-corrected electromagnetic scattering from a randomly rough surface. IEEE Trans. Antennas Propag., 17, 577585, https://doi.org/10.1109/TAP.1969.1139516.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, R., and Coauthors, 2018: An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev., 11, 27172737, https://doi.org/10.5194/gmd-11-2717-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siewert, C. E., 2000: A discrete-ordinates solution for radiative-transfer models that include polarization effects. J. Quant. Spectrosc. Radiat. Transfer, 64, 227254, https://doi.org/10.1016/S0022-4073(99)00006-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sommersten, E. R., J. K. Lotsberg, K. Stamnes, and J. J. Stamnes, 2010: Discrete ordinate and Monte Carlo simulations for polarized radiative transfer in a coupled system consisting of two media with different refractive indices. J. Quant. Spectrosc. Radiat. Transfer, 111, 616633, https://doi.org/10.1016/j.jqsrt.2009.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spurr, R. J. D., 2006: VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. Transfer, 102, 316342, https://doi.org/10.1016/j.jqsrt.2006.05.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spurr, R. J. D., T. P. Kurosu, and K. V. Chance, 2001: A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. J. Quant. Spectrosc. Radiat. Transfer, 68, 689735, https://doi.org/10.1016/S0022-4073(00)00055-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spurr, R. J. D., J. Wang, J. Zeng, and M. I. Mishchenko, 2012: Linearized T-matrix and Mie scattering computations. J. Quant. Spectrosc. Radiat. Transfer, 113, 425439, https://doi.org/10.1016/j.jqsrt.2011.11.014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamnes, S., S. C. Ou, Z. Lin, Y. Takano, S. C. Tsay, K. N. Liou, and K. Stamnes, 2017: Polarized radiative transfer of a cirrus cloud consisting of randomly oriented hexagonal ice crystals: The 3 × 3 approximation for non-spherical particles. J. Quant. Spectrosc. Radiat. Transfer, 193, 5768, https://doi.org/10.1016/j.jqsrt.2016.07.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., G. W. Kattawar, P. Yang, and E. Mlawer, 2017: An improved small-angle approximation for forward scattering and its use in a fast two-component radiative transfer method. J. Atmos. Sci., 74, 19591987, https://doi.org/10.1175/JAS-D-16-0278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B., C. Gao, L. Bi, and R. Spurr, 2021: Analytical Jacobians of single scattering optical properties using the invariant imbedding T-matrix method. Opt. Express, 29, 96359669, https://doi.org/10.1364/OE.421886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tynes, H. H., G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, 2001: Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations. Appl. Opt., 40, 400412, https://doi.org/10.1364/AO.40.000400.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ustinov, E. A., 2001: Adjoint sensitivity analysis of radiative transfer equation: Temperature and gas mixing ratio weighting functions for remote sensing of scattering atmospheres in thermal IR. J. Quant. Spectrosc. Radiat. Transfer, 68, 195211, https://doi.org/10.1016/S0022-4073(00)00022-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van de Hulst, H. C., 1957: Light Scattering by Small Particles. John Wiley and Sons, 480 pp.

    • Crossref
    • Export Citation
  • Vukićević, T., and R. M. Errico, 1993: Linearization and adjoint of parameterized moist diabatic processes. Tellus, 45A, 493510, https://doi.org/10.3402/tellusa.v45i5.15051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walter, H. H., J. Landgraf, and O. P. Hasekamp, 2004: Linearization of a pseudo-spherical vector radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 85, 251283, https://doi.org/10.1016/S0022-4073(03)00228-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wanner, W., X. Li, and A. H. Strahler, 1995: On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res., 100, 21 07721 089, https://doi.org/10.1029/95JD02371.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, F., and Q. Liu, 2003: Satellite data assimilation in numerical weather prediction models. Part I: Forward radiative transfer and Jacobian modeling in cloudy atmospheres. J. Atmos. Sci., 60, 26332646, https://doi.org/10.1175/1520-0469(2003)060<2633:SDAINW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wiscombe, W. J., 1977: The delta–M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 14081422, https://doi.org/10.1175/1520-0469(1977)034<1408:TDMRYA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., and A. B. Davis, 2011: Derivatives of light scattering properties of a nonspherical particle computed with the T-matrix method. Opt. Lett., 36, 44644466, https://doi.org/10.1364/OL.36.004464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., A. B. Davis, R. A. West, J. V. Martonchik, and D. J. Diner, 2011: Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere overlying a polarizing surface. Opt. Lett., 36, 20832085, https://doi.org/10.1364/OL.36.002083.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, F., A. B. Davis, S. V. Sanghavi, J. V. Martonchik, and D. J. Diner, 2012: Linearization of Markov chain formalism for vector radiative transfer in a plane-parallel atmosphere/surface system. Appl. Opt., 51, 34913507, https://doi.org/10.1364/AO.51.003491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., J. Ding, R. Lee Panetta, K.-N. Liou, G. W. Kattawar, and M. Mishchenko, 2019: On the convergence of numerical computations for both exact and approximate solutions for electromagnetic scattering by nonspherical dielectric particles. Prog. Electromagn. Res., 164, 2764, https://doi.org/10.2528/PIER18112810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zege, E. P., and I. N. Polonsky, 1993: Multicomponent approach to light propagation in clouds and mists. Appl. Opt., 32, 28032812, https://doi.org/10.1364/AO.32.002803.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zege, E. P., I. N. Polonsky, and L. I. Chaikovskaya, 1987: Peculiarities of the radiation beam propagation at slant illumination of absorbing anisotropically scattering medium. Izv. Akad.Nauk SSSR, Ser. Khim., 23, 486492.

    • Search Google Scholar
    • Export Citation
  • Zege, E. P., A. P. Ivanov, and I. L. Katsev, 1991: Image Transfer through a Scattering Medium. Springer-Verlag, 349 pp.

    • Crossref
    • Export Citation
  • Zhai, P.-W., Y. Hu, J. Chowdhary, C. R. Trepte, P. L. Lucker, and D. B. Josset, 2010: A vector radiative transfer model for coupled atmosphere and ocean systems with a rough interface. J. Quant. Spectrosc. Radiat. Transfer, 111, 10251040, https://doi.org/10.1016/j.jqsrt.2009.12.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhai, P.-W., M. Gao, B. A. Franz, P. J. Werdell, A. Ibrahim, Y. Hu, and J. Chowdhary, 2022: A radiative transfer simulator for PACE: Theory and applications. Front. Remote Sens., 3, 840188, https://doi.org/10.3389/frsen.2022.840188.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 438 438 15
Full Text Views 148 148 4
PDF Downloads 161 161 5

Tangent-Linear and Adjoint Models for the Transfer of Polarized Radiation

Jiachen DingaDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Jiachen Ding in
Current site
Google Scholar
PubMed
Close
and
Ping YangaDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas
bDepartment of Oceanography, Texas A&M University, College Station, Texas
cDepartment of Physics and Astronomy, Texas A&M University, College Station, Texas

Search for other papers by Ping Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study reports the development of tangent-linear and adjoint models for a vector radiative transfer model called TAMU-VRTM. This vector radiative transfer model is further validated in the case of the atmosphere–ocean coupled system, although previous validation was conducted for single and multiple layers. The TAMU-VRTM and tangent-linear and adjoint models can be applied to remote sensing and data assimilation based on spaceborne and airborne polarimetric observations. The tangent-linear and adjoint models accurately and efficiently compute the derivatives of output Stokes parameters with respect to input variables of the TAMU-VRTM. An inversion algorithm can straightforwardly compute the Jacobian matrix from the derivatives of Stokes parameters using the chain rule. We validate the tangent-linear and adjoint models by comparing them with the finite-difference method, and show that the finite-difference results converge to the tangent-linear and adjoint results. Furthermore, the adjoint model can efficiently compute the derivatives of observables with respect to the scattering phase matrix elements. This capability can be used to evaluate the scattering phase matrix assumed in an inversion algorithm and has potential for applications to inferring scattering phase matrix elements of cloud, aerosol, and hydrosol particles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ping Yang, pyang@tamu.edu

Abstract

This study reports the development of tangent-linear and adjoint models for a vector radiative transfer model called TAMU-VRTM. This vector radiative transfer model is further validated in the case of the atmosphere–ocean coupled system, although previous validation was conducted for single and multiple layers. The TAMU-VRTM and tangent-linear and adjoint models can be applied to remote sensing and data assimilation based on spaceborne and airborne polarimetric observations. The tangent-linear and adjoint models accurately and efficiently compute the derivatives of output Stokes parameters with respect to input variables of the TAMU-VRTM. An inversion algorithm can straightforwardly compute the Jacobian matrix from the derivatives of Stokes parameters using the chain rule. We validate the tangent-linear and adjoint models by comparing them with the finite-difference method, and show that the finite-difference results converge to the tangent-linear and adjoint results. Furthermore, the adjoint model can efficiently compute the derivatives of observables with respect to the scattering phase matrix elements. This capability can be used to evaluate the scattering phase matrix assumed in an inversion algorithm and has potential for applications to inferring scattering phase matrix elements of cloud, aerosol, and hydrosol particles.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ping Yang, pyang@tamu.edu
Save