• Barnes, S. L., 1970: Some aspects of a severe, right-moving thunderstorm deduced from mesonetwork rawinsonde observations. J. Atmos. Sci., 27, 634648, https://doi.org/10.1175/1520-0469(1970)027<0634:SAOASR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and R. Davies-Jones, 1993: Environmental helicity and the maintenance and evolution of low-level mesocyclones. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 97–104.

    • Crossref
    • Export Citation
  • Brooks, H. E., C. A. Doswell III, and J. Cooper, 1994: On the environments of tornadic and nontornadic mesocyclones. Wea. Forecasting, 9, 606618, https://doi.org/10.1175/1520-0434(1994)009<0606:OTEOTA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, M., and C. J. Nowotarski, 2019: The influence of lifting condensation level on low-level outflow and rotation in simulated supercell thunderstorms. J. Atmos. Sci., 76, 13491372, https://doi.org/10.1175/JAS-D-18-0216.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and C. R. Landry, 1963: Airflow within a tornadic storm. Preprints, 10th Weather Radar Conf., Washington, DC, Amer. Meteor. Soc., 116–122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, https://doi.org/10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and D. T. Dawson, 2021: An idealized physical model for the severe convective storm environmental sounding. J. Atmos. Sci., 78, 653670, https://doi.org/10.1175/JAS-D-20-0120.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, https://doi.org/10.1175/MWR-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2017: Simulated supercells in nontornadic and tornadic VORTEX2 environments. Mon. Wea. Rev., 145, 149180, https://doi.org/10.1175/MWR-D-16-0226.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and P. M. Markowski, 2018: Comments on “The regulation of tornado intensity by updraft width.” J. Atmos. Sci., 75, 40494056, https://doi.org/10.1175/JAS-D-18-0170.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2018: Is there a “tipping point” between simulated nontornadic and tornadic supercells in VORTEX2 environments? Mon. Wea. Rev., 146, 26672693, https://doi.org/10.1175/MWR-D-18-0050.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, J. M. L. Dahl, L. J. Wicker, and A. J. Clark, 2017: Volatility of tornadogenesis: An ensemble of simulated nontornadic and tornadic supercells in VORTEX2 environments. Mon. Wea. Rev., 145, 46054625, https://doi.org/10.1175/MWR-D-17-0152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. D. Parker, R. L. Thompson, B. T. Smith, and R. E. Jewell, 2019: Using near-ground storm relative helicity in supercell tornado forecasting. Wea. Forecasting, 34, 14171435, https://doi.org/10.1175/WAF-D-19-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., M. Taszarek, and M. D. Parker, 2020: Near-ground wind profiles of tornadic and nontornadic environments in the United States and Europe from ERA5 reanalyses. Wea. Forecasting, 35, 26212638, https://doi.org/10.1175/WAF-D-20-0153.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and M. D. Parker, 2020: Insights into supercells and their environments from three decades of targeted radiosonde observations. Mon. Wea. Rev., 148, 48934915, https://doi.org/10.1175/MWR-D-20-0105.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., and R. E. Jewell, 2022: SPC mesoscale analysis compared to field-project soundings: Implications for supercell environment studies. Mon. Wea. Rev., 150, 567588, https://doi.org/10.1175/MWR-D-21-0222.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M., M. D. Parker, and L. J. Wicker, 2014: Imported and storm-generated near-ground vertical vorticity in a simulated supercell. J. Atmos. Sci., 71, 30273051, https://doi.org/10.1175/JAS-D-13-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1973: The dependence of core radius on swirl ratio in a tornado simulator. J. Atmos. Sci., 30, 14271430, https://doi.org/10.1175/1520-0469(1973)030<1427:TDOCRO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006, https://doi.org/10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2008: Can a descending rain curtain in a supercell instigate tornadogenesis barotropically? J. Atmos. Sci., 65, 24692497, https://doi.org/10.1175/2007JAS2516.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2015: A review of supercell and tornado dynamics. Atmos. Res., 158–159, 274291, https://doi.org/10.1016/j.atmosres.2014.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2017: Roles of streamwise and transverse partial-vorticity components in steady inviscid isentropic supercell-like flows. J. Atmos. Sci., 74, 30213041, https://doi.org/10.1175/JAS-D-16-0332.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., 2021: Invented forces in supercell models. J. Atmos. Sci., 78, 29272939, https://doi.org/10.1175/JAS-D-21-0082.1.

  • Davies-Jones, R. P., 2022: Theory of parcel vorticity evolution in supercell-like flows. J. Atmos. Sci., 79, 12531270, https://doi.org/10.1175/JAS-D-21-0178.1.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R. P., and H. Brooks, 1993: Mesocyclogenesis from a theoretical perspective. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 105–114, https://doi.org/10.1029/GM079p0105.

    • Crossref
    • Export Citation
  • Davies-Jones, R. P., D. W. Burgess, and M. Foster, 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Provincial Park, AB, Canada, Amer. Meteor. Soc., 588–592.

    • Crossref
    • Export Citation
  • Doswell, C. A., and D. Burgess, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 151172.

    • Crossref
    • Export Citation
  • Dowell, D. C., and H. B. Bluestein, 2002: The 8 June 1995 Mclean, Texas, storm. Part II: Cyclic tornado formation, maintenance, and dissipation. Mon. Wea. Rev., 130, 26492670, https://doi.org/10.1175/1520-0493(2002)130<2649:TJMTSP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., S. M. Lazarus, and R. Davies-Jones, 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 20052029, https://doi.org/10.1175/1520-0493(1993)121<2005:TIOHON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Durran, D. R., and J. B. Klemp, 1983: A compressible model for the simulation of moist mountain waves. Mon. Wea. Rev., 111, 23412361, https://doi.org/10.1175/1520-0493(1983)111<2341:ACMFTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2020: The relative importance of updraft and cold pool characteristics in supercell tornadogenesis using highly idealized simulations. J. Atmos. Sci., 77, 40894107, https://doi.org/10.1175/JAS-D-20-0126.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, J., and J. M. L. Dahl, 2022: Transition of near-ground vorticity dynamics during tornadogenesis. J. Atmos. Sci., 79, 467483, https://doi.org/10.1175/JAS-D-21-0181.1.

    • Search Google Scholar
    • Export Citation
  • Flournoy, M. D., and E. N. Rasmussen, 2021: The influence of ground-relative flow and friction on near-surface storm-relative helicity. J. Atmos. Sci., 78, 21352142, https://doi.org/10.1175/JAS-D-20-0320.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldacker, N. A., and M. D. Parker, 2021: Low-level updraft intensification in response to environmental wind profiles. J. Atmos. Sci., 78, 27632781, https://doi.org/10.1175/JAS-D-20-0354.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guarriello, F., C. J. Nowotarski, and C. C. Epifanio, 2018: Effects of low-level wind profile on outflow position and near-surface vertical vorticity in simulated supercell thunderstorms. J. Atmos. Sci., 75, 731753, https://doi.org/10.1175/JAS-D-17-0174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., 1987: Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech., 19, 369402, https://doi.org/10.1146/annurev.fl.19.010187.002101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: Simulations of right- and left-moving storms produced through storm splitting. J. Atmos. Sci., 35, 10971110, https://doi.org/10.1175/1520-0469(1978)035<1097:SORALM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1986: The structure, energetics, and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci., 43, 126140, https://doi.org/10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., and R. J. Trapp, 2019: The dynamical coupling of convective updrafts, down-drafts, and cold pools in simulated supercell thunderstorms. J. Geophys. Res. Atmos., 124, 664683, https://doi.org/10.1029/2018JD029055.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marion, G. R., R. J. Trapp, and S. W. Nesbitt, 2019: Using overshooting top area to discriminate potential for large, intense tornadoes. Geophys. Res. Lett., 46, 12 52012 526, https://doi.org/10.1029/2019GL084099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2017: Large sensitivity of near-surface vertical vorticity development to heat sink location in idealized simulations of supercell-like storms. J. Atmos. Sci., 74, 10951104, https://doi.org/10.1175/JAS-D-16-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., J. M. Straka, and E. N. Rasmussen, 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721, https://doi.org/10.1175/1520-0493(2002)130<1692:DSTOWT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12621272, https://doi.org/10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., 1991: Buoyancy and shear characteristics of hurricane-tornado environments. Mon. Wea. Rev., 119, 19541978, https://doi.org/10.1175/1520-0493(1991)119<1954:BASCOH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., 2017: An analytic description of the structure and evolution of growing deep cumulus updrafts. J. Atmos. Sci., 74, 809834, https://doi.org/10.1175/JAS-D-16-0234.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. M. Peters, 2018: Theoretical expressions for the ascent rate of moist convective thermals. J. Atmos. Sci., 75, 16991719, https://doi.org/10.1175/JAS-D-17-0295.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts: Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murdzek, S. S., P. M. Markowski, and Y. P. Richardson, 2020: Simultaneous dual-Doppler and mobile mesonet observations of streamwise vorticity currents in three supercells. Mon. Wea. Rev., 148, 48594874, https://doi.org/10.1175/MWR-D-20-0239.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Naylor, J., and M. S. Gilmore, 2012: Convective initiation in an idealized cloud model using an updraft nudging technique. Mon. Wea. Rev., 140, 36993705, https://doi.org/10.1175/MWR-D-12-00163.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783801, https://doi.org/10.1175/WAF-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Orf, L., R. Wilhelmson, B. Lee, C. Finley, and A. Houston, 2017: Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98, 4568, https://doi.org/10.1175/BAMS-D-15-00073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., 2014: Composite VORTEX2 supercell environments from near-storm soundings. Mon. Wea. Rev., 142, 508529, https://doi.org/10.1175/MWR-D-13-00167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Parker, M. D., and J. M. L. Dahl, 2015: Production of near-surface vertical vorticity by idealized downdrafts. Mon. Wea. Rev., 143, 27952816, https://doi.org/10.1175/MWR-D-14-00310.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. Nowotarski, and H. Morrison, 2019: The role of vertical wind shear in modulating maximum supercell updraft velocities. J. Atmos. Sci., 76, 31693189, https://doi.org/10.1175/JAS-D-19-0096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, W. M. Hannah, A. C. Varble, and S. E. Giangrande, 2020a: Thermal chains and entrainment in cumulus updrafts: Part II: Simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, C. J. Nowotarski, J. P. Mulholland, and R. L. Thompson, 2020b: A formula for the maximum vertical velocity in supercell updrafts. J. Atmos. Sci., 77, 37473757, https://doi.org/10.1175/JAS-D-20-0103.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and G. Mullendore, 2020c: Are supercells resistant to entrainment because of their rotation? J. Atmos. Sci., 77, 14751495, https://doi.org/10.1175/JAS-D-19-0316.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., C. J. Nowotarski, and J. P. Mulholland, 2020d: The influences of effective inflow layer streamwise vorticity and storm-relative flow on supercell updraft properties. J. Atmos. Sci., 77, 30333057, https://doi.org/10.1175/JAS-D-19-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022a: The influence of shear on deep convection initiation. Part I: Theory. J. Atmos. Sci., 79, 16691690, https://doi.org/10.1175/JAS-D-21-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., H. Morrison, T. C. Nelson, J. N. Marquis, J. P. Mulholland, and C. J. Nowotarski, 2022b: The influence of shear on deep convection initiation. Part II: Simulations. J. Atmos. Sci., 79, 16911711, https://doi.org/10.1175/JAS-D-21-0144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peters, J. M., J. P. Mulholland, and D. R. Chavas, 2022c: Generalized lapse rate formulas for use in entraining cape calculations. J. Atmos. Sci., 79, 815836, https://doi.org/10.1175/JAS-D-21-0118.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1985: On the rotation and propagation of simulated supercell thunderstorms. J. Atmos. Sci., 42, 271292, https://doi.org/10.1175/1520-0469(1985)042<0271:OTRAPO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schueth, A., C. Weiss, and J. M. L. Dahl, 2021: Comparing observations and simulations of the streamwise vorticity current and the forward-flank convergence boundary in a supercell storm. Mon. Wea. Rev., 149, 16511671, https://doi.org/10.1175/MWR-D-20-0251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sessa, M. F., and R. J. Trapp, 2020: Observed relationship between tornado intensity and pretornadic mesocyclone characteristics. Wea. Forecasting, 35, 12431261, https://doi.org/10.1175/WAF-D-19-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., C. C. Weiss, M. M. French, H. B. Bluestein, P. M. Markowski, and Y. P. Richardson, 2014: VORTEX2 observations of a low-level mesocyclone with multiple internal rear-flank downdraft momentum surges in the 18 May 2010 Dumas, Texas, Supercell. Mon. Wea. Rev., 142, 29352960, https://doi.org/10.1175/MWR-D-13-00240.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, https://doi.org/10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taszarek, M., J. T. Allen, T. Púcik, K. A. Hoogewind, and H. E. Brooks, 2020: Severe convective storms across Europe and the United States. Part II: ERA5 environments associated with lightning, large hail, severe wind, and tornadoes. J. Climate, 33, 10 26310 286, https://doi.org/10.1175/JCLI-D-20-0346.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., 1998: Eta model storm-relative winds associated with tornadic and nontornadic supercells. Wea. Forecasting, 13, 125137, https://doi.org/10.1175/1520-0434(1998)013<0125:EMSRWA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, https://doi.org/10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, https://doi.org/10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, https://doi.org/10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2017: The regulation of tornado intensity by updraft width. J. Atmos. Sci., 74, 41994211, https://doi.org/10.1175/JAS-D-16-0331.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., G. R. Marion, and S. W. Nesbitt, 2018: Reply to “Comments on ‘The regulation of tornado intensity by updraft width.’” J. Atmos. Sci., 75, 40574061, https://doi.org/10.1175/JAS-D-18-0276.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warren, R. A., H. Richter, H. A. Ramsay, S. T. Siems, and M. J. Manton, 2017: Impact of variations in upper-level shear on simulated supercells. Mon. Wea. Rev., 145, 26592681, https://doi.org/10.1175/MWR-D-16-0412.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., and R. B. Wilhelmson, 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703, https://doi.org/10.1175/1520-0469(1995)052<2675:SAAOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., D. Dowell, Y. Richardson, P. Markowski, E. Rasmussen, D. Burgess, L. Wicker, and H. B. Bluestein, 2012: The second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170, https://doi.org/10.1175/BAMS-D-11-00010.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1840 1840 284
Full Text Views 520 520 43
PDF Downloads 593 593 51

Disentangling the Influences of Storm-Relative Flow and Horizontal Streamwise Vorticity on Low-Level Mesocyclones in Supercells

John M. PetersaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by John M. Peters in
Current site
Google Scholar
PubMed
Close
,
Brice E. CofferbDepartment of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Brice E. Coffer in
Current site
Google Scholar
PubMed
Close
,
Matthew D. ParkerbDepartment of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina

Search for other papers by Matthew D. Parker in
Current site
Google Scholar
PubMed
Close
,
Christopher J. NowotarskicDepartment of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Christopher J. Nowotarski in
Current site
Google Scholar
PubMed
Close
,
Jake P. MulhollandeDepartment of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota

Search for other papers by Jake P. Mulholland in
Current site
Google Scholar
PubMed
Close
,
Cameron J. NixondDepartment of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Search for other papers by Cameron J. Nixon in
Current site
Google Scholar
PubMed
Close
, and
John T. AllendDepartment of Earth and Atmospheric Sciences, Central Michigan University, Mount Pleasant, Michigan

Search for other papers by John T. Allen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells.

Significance Statement

The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John M. Peters, john.m.peters@psu.edu

Abstract

Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells.

Significance Statement

The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: John M. Peters, john.m.peters@psu.edu
Save