A Moist Potential Vorticity Model for Midlatitude Long-Lived Mesoscale Convective Systems over Land

Qiu Yang aAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Qiu Yang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7675-1172
,
L. Ruby Leung aAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Zhe Feng aAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Zhe Feng in
Current site
Google Scholar
PubMed
Close
, and
Xingchao Chen bDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
cCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Xingchao Chen in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Mesoscale convective systems (MCSs) bring large amounts of rainfall and strong wind gusts to the midlatitude land regions, with significant impacts on local weather and hydrologic cycle. However, weather and climate models face a huge challenge in accurately modeling the MCS life cycle and the associated precipitation, highlighting an urgent need for a better understanding of the underlying mechanisms of MCS initiation and propagation. From a theoretical perspective, a suitable model to capture the realistic properties of MCSs and isolate the bare-bones mechanisms for their initiation, intensification, and eastward propagation is still lacking. To simulate midlatitude MCSs over land, we develop a simple moist potential vorticity (PV) model that readily describes the interactions among PV perturbations, air moisture, and soil moisture. Multiple experiments with or without various environmental factors and external forcing are used to investigate their impacts on MCS dynamics and mesoscale circulation vertical structures. The result shows that mechanical forcing can induce lower-level updraft and cooling, providing favorable conditions for MCS initiation. A positive feedback among surface winds, evaporation rate, and air moisture similar to the wind-induced surface heat exchange over tropical ocean is found to support MCS intensification. Both background surface westerlies and vertical westerly wind shear are shown to provide favorable conditions for the eastward propagation of MCSs. Last, our result highlights the crucial role of stratiform heating in shaping mesoscale circulation response. The model should serve as a useful tool for understanding the fundamental mechanisms of MCS dynamics.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiu Yang, qiu.yang@pnnl.gov

Abstract

Mesoscale convective systems (MCSs) bring large amounts of rainfall and strong wind gusts to the midlatitude land regions, with significant impacts on local weather and hydrologic cycle. However, weather and climate models face a huge challenge in accurately modeling the MCS life cycle and the associated precipitation, highlighting an urgent need for a better understanding of the underlying mechanisms of MCS initiation and propagation. From a theoretical perspective, a suitable model to capture the realistic properties of MCSs and isolate the bare-bones mechanisms for their initiation, intensification, and eastward propagation is still lacking. To simulate midlatitude MCSs over land, we develop a simple moist potential vorticity (PV) model that readily describes the interactions among PV perturbations, air moisture, and soil moisture. Multiple experiments with or without various environmental factors and external forcing are used to investigate their impacts on MCS dynamics and mesoscale circulation vertical structures. The result shows that mechanical forcing can induce lower-level updraft and cooling, providing favorable conditions for MCS initiation. A positive feedback among surface winds, evaporation rate, and air moisture similar to the wind-induced surface heat exchange over tropical ocean is found to support MCS intensification. Both background surface westerlies and vertical westerly wind shear are shown to provide favorable conditions for the eastward propagation of MCSs. Last, our result highlights the crucial role of stratiform heating in shaping mesoscale circulation response. The model should serve as a useful tool for understanding the fundamental mechanisms of MCS dynamics.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Qiu Yang, qiu.yang@pnnl.gov
Save
  • Ahijevych, D., J. O. Pinto, J. K. Williams, and M. Steiner, 2016: Probabilistic forecasts of mesoscale convective system initiation using the random forest data mining technique. Wea. Forecasting, 31, 581599, https://doi.org/10.1175/WAF-D-15-0113.1.

    • Search Google Scholar
    • Export Citation
  • Ajayamohan, R., B. Khouider, A. J. Majda, and Q. Deng, 2016: Role of stratiform heating on the organization of convection over the monsoon trough. Climate Dyn., 47, 36413660, https://doi.org/10.1007/s00382-016-3033-7.

    • Search Google Scholar
    • Export Citation
  • Anderson, C. J., and R. W. Arritt, 1998: Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Wea. Rev., 126, 578599, https://doi.org/10.1175/1520-0493(1998)126<0578:MCCAPE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bannon, P. R., 1996: On the anelastic approximation for a compressible atmosphere. J. Atmos. Sci., 53, 36183628, https://doi.org/10.1175/1520-0469(1996)053<3618:OTAAFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barlage, M., F. Chen, R. Rasmussen, Z. Zhang, and G. Miguez-Macho, 2021: The importance of scale-dependent groundwater processes in land-atmosphere interactions over the central United States. Geophys. Res. Lett., 48, e2020GL092171, https://doi.org/10.1029/2020GL092171.

    • Search Google Scholar
    • Export Citation
  • Betts, A., R. Grover, and M. Moncrieff, 1976: Structure and motion of tropical squall-lines over Venezuela. Quart. J. Roy. Meteor. Soc., 102, 395404, https://doi.org/10.1002/qj.49710243209.

    • Search Google Scholar
    • Export Citation
  • Brenowitz, N., A. Majda, and Q. Yang, 2018: The multiscale impacts of organized convection in global 2-D cloud-resolving models. J. Adv. Model. Earth Syst., 10, 20092025, https://doi.org/10.1029/2018MS001335.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Cao, G., and G. J. Zhang, 2017: Role of vertical structure of convective heating in MJO simulation in NCAR CAM5.3. J. Climate, 30, 74237439, https://doi.org/10.1175/JCLI-D-16-0913.1.

    • Search Google Scholar
    • Export Citation
  • Chen, C.-C., J. Richter, C. Liu, M. Moncrieff, Q. Tang, W. Lin, S. Xie, and P. J. Rasch, 2021: Effects of organized convection parameterization on the MJO and precipitation in E3SMv1. Part I: Mesoscale heating. J. Adv. Model. Earth Syst., 13, e2020MS002401, https://doi.org/10.1029/2020MS002401.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, F. Song, and Q. Yang, 2021: Mesoscale convective systems dominate the energetics of the South Asian summer monsoon onset. Geophys. Res. Lett., 48, e2021GL094873, https://doi.org/10.1029/2021GL094873.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, and F. Song, 2022a: Crucial role of mesoscale convective systems in the vertical mass, water, and energy transports of the South Asian summer monsoon. J. Climate, 35, 91108, https://doi.org/10.1175/JCLI-D-21-0124.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, and Q. Yang, 2022b: Precipitation-moisture coupling over tropical oceans: Sequential roles of shallow, deep, and mesoscale convective systems. Geophys. Res. Lett., 49, e2022GL097836, https://doi.org/10.1029/2022GL097836.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., D. J. Stensrud, and M. B. Richman, 2004: An observational study of derecho-producing convective systems. Wea. Forecasting, 19, 320337, https://doi.org/10.1175/1520-0434(2004)019<0320:AOSODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSS derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, https://doi.org/10.1175/2010MWR3233.1.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S., J. Meritt, and J. Fritsch, 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, https://doi.org/10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deng, Q., B. Khouider, A. J. Majda, and R. Ajayamohan, 2016: Effect of stratiform heating on the planetary-scale organization of tropical convection. J. Atmos. Sci., 73, 371392, https://doi.org/10.1175/JAS-D-15-0178.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., M. Fantini, and A. J. Thorpe, 1987: Baroclinic instability in an environment of small stability to slantwise moist convection. J. Atmos. Sci., 44, 15591573, https://doi.org/10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., 2019: Mesoscale convective system (MCS) database over United States. ARM, accessed 24 November 2022, https://www.arm.gov/data/data-sources/flextrkr-164.

  • Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson, and K. Balaguru, 2016: More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., R. A. Houze Jr., L. R. Leung, F. Song, J. C. Hardin, J. Wang, W. I. Gustafson, and C. R. Homeyer, 2019: Spatiotemporal characteristics and large-scale environments of mesoscale convective systems east of the Rocky Mountains. J. Climate, 32, 73037328, https://doi.org/10.1175/JCLI-D-19-0137.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., F. Song, K. Sakaguchi, and L. R. Leung, 2021a: Evaluation of mesoscale convective systems in climate simulations: Methodological development and results from MPAS-CAM over the United States. J. Climate, 34, 26112633, https://doi.org/10.1175/JCLI-D-20-0136.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., and Coauthors, 2021b: A global high-resolution mesoscale convective system database using satellite-derived cloud tops, surface precipitation, and tracking. J. Geophys. Res. Atmos., 126, e2020JD034202, https://doi.org/10.1029/2020JD034202.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J., R. Kane, and C. Chelius, 1986: The contribution of mesoscale convective weather systems to the warm-season precipitation in the United States. J. Climate Appl. Meteor., 25, 13331345, https://doi.org/10.1175/1520-0450(1986)025<1333:TCOMCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haberlie, A. M., and W. S. Ashley, 2019: A radar-based climatology of mesoscale convective systems in the United States. J. Climate, 32, 15911606, https://doi.org/10.1175/JCLI-D-18-0559.1.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative–convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1975: Squall lines observed in the vicinity of the researcher during phase III of GATE. Preprints, 16th Radar Meteorology Conf., Houston, TX, Amer. Meteor. Soc., 206–209.

  • Houze, R. A., Jr., 1977: Structure and dynamics of a tropical squall-line system. Mon. Wea. Rev., 105, 15401567, https://doi.org/10.1175/1520-0493(1977)105<1540:SADOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, https://doi.org/10.1029/2004RG000150.

  • Hu, H., Z. Feng, and L. R. Leung, 2021a: Linking flood frequency with mesoscale convective systems in the US. Geophys. Res. Lett., 48, e2021GL092546, https://doi.org/10.1029/2021GL092546.

    • Search Google Scholar
    • Export Citation
  • Hu, H., L. R. Leung, and Z. Feng, 2021b: Early warm-season mesoscale convective systems dominate soil moisture–precipitation feedback for summer rainfall in central United States. Proc. Natl. Acad. Sci. USA, 118, e2105260118, https://doi.org/10.1073/pnas.2105260118.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., N.-C. Lau, and S. A. Klein, 2006: Role of eastward propagating convection systems in the diurnal cycle and seasonal mean of summertime rainfall over the US Great Plains. Geophys. Res. Lett., 33, L19809, https://doi.org/10.1029/2006GL027022.

    • Search Google Scholar
    • Export Citation
  • Knievel, J. C., and R. H. Johnson, 2002: The kinematics of a midlatitude, continental mesoscale convective system and its mesoscale vortex. Mon. Wea. Rev., 130, 17491770, https://doi.org/10.1175/1520-0493(2002)130<1749:TKOAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeVeque, R. J., 2002: Finite Volume Methods for Hyperbolic Problems. Vol. 31. Cambridge University Press, 558 pp.

  • Li, Y., and R. B. Smith, 2010: The detection and significance of diurnal pressure and potential vorticity anomalies east of the Rockies. J. Atmos. Sci., 67, 27342751, https://doi.org/10.1175/2010JAS3423.1.

    • Search Google Scholar
    • Export Citation
  • Lin, G., C. R. Jones, L. R. Leung, Z. Feng, and M. Ovchinnikov, 2022: Mesoscale convective systems in a superparameterized E3SM simulation at high resolution. J. Adv. Model. Earth Syst., 14, e2021MS002660, https://doi.org/10.1029/2021MS002660.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, https://doi.org/10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude, mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1978: The dynamical structure of two-dimensional steady convection in constant vertical shear. Quart. J. Roy. Meteor. Soc., 104, 543567, https://doi.org/10.1002/qj.49710444102.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1981: A theory of organized steady convection and its transport properties. Quart. J. Roy. Meteor. Soc., 107, 2950, https://doi.org/10.1002/qj.49710745103.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1985: Steady convection in pressure coordinates. Quart. J. Roy. Meteor. Soc., 111, 857866, https://doi.org/10.1002/qj.49711146911.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parametrization. Quart. J. Roy. Meteor. Soc., 118, 819850, https://doi.org/10.1002/qj.49711850703.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2019: Toward a dynamical foundation for organized convection parameterization in GCMS. Geophys. Res. Lett., 46, 14 10314 108, https://doi.org/10.1029/2019GL085316.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and J. Green, 1972: The propagation and transfer properties of steady convective overturning in shear. Quart. J. Roy. Meteor. Soc., 98, 336352, https://doi.org/10.1002/qj.49709841607.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, https://doi.org/10.1002/qj.49710243208.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., C. Liu, and P. Bogenschutz, 2017: Simulation, modeling, and dynamically based parameterization of organized tropical convection for global climate models. J. Atmos. Sci., 74, 13631380, https://doi.org/10.1175/JAS-D-16-0166.1.

    • Search Google Scholar
    • Export Citation
  • Munich RE, 2016: Natural catastrophes 2015: Analyses, assessment, positions. Munich RE Rep., 82 pp., https://www.preventionweb.net/publication/topics-geo-natural-catastrophes-2015-analyses-assessments-positions.

  • Parker, D. J., and A. J. Thorpe, 1995: The role of snow sublimation in frontogenesis. Quart. J. Roy. Meteor. Soc., 121, 763782, https://doi.org/10.1002/qj.49712152403.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. Springer, 710 pp., https://doi.org/10.1007/978-1-4612-4650-3.

  • Pietschnig, M., A. L. Swann, F. H. Lambert, and G. K. Vallis, 2021: Response of tropical rainfall to reduced evapotranspiration depends on continental extent. J. Climate, 34, 92219234, https://doi.org/10.1175/JCLI-D-21-0195.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Grim, and M. Steiner, 2015: Assessment of the High-Resolution Rapid Refresh model’s ability to predict mesoscale convective systems using object-based evaluation. Wea. Forecasting, 30, 892913, https://doi.org/10.1175/WAF-D-14-00118.1.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., S.-Y. S. Wang, J. Meyer, R. Gillies, and Y.-H. Lin, 2019: Climate of the weakly-forced yet high-impact convective storms throughout the Ohio River valley and mid-Atlantic United States. Climate Dyn., 52, 57095721, https://doi.org/10.1007/s00382-018-4472-0.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, R. Bullock, R. M. Rasmussen, G. J. Holland, and M. Clark, 2017a: Simulating North American mesoscale convective systems with a convection-permitting climate model. Climate Dyn., 55, 95110, https://doi.org/10.1007/s00382-017-3993-2.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., C. Liu, K. Ikeda, S. B. Trier, R. M. Rasmussen, G. J. Holland, and M. P. Clark, 2017b: Increased rainfall volume from future convective storms in the US. Nat. Climate Change, 7, 880884, https://doi.org/10.1038/s41558-017-0007-7.

    • Search Google Scholar
    • Export Citation
  • Raymond, D., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2014: Rayleigh damping in the free troposphere. J. Atmos. Sci., 71, 553565, https://doi.org/10.1175/JAS-D-13-062.1.

  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., S. Stevenson, and C. Williams, 2015: Vertical motions of the tropical convective cloud spectrum over Darwin, Australia. Quart. J. Roy. Meteor. Soc., 141, 22772288, https://doi.org/10.1002/qj.2520.

    • Search Google Scholar
    • Export Citation
  • Song, F., Z. Feng, L. R. Leung, B. Pokharel, S.-Y. S. Wang, X. Chen, K. Sakaguchi, and C.-c. Wang, 2021: Crucial roles of eastward propagating environments in the summer MCS initiation over the US Great Plains. J. Geophys. Res. Atmos., 126, e2021JD034991, https://doi.org/10.1029/2021JD034991.

    • Search Google Scholar
    • Export Citation
  • Song, F., L. R. Leung, Z. Feng, X. Chen, and Q. Yang, 2022: Observed and projected changes of large-scale environments conducive to spring MCS initiation over the US Great Plains. Geophys. Res. Lett., 49, e2022GL098799, https://doi.org/10.1029/2022GL098799.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., J.-W. Bao, and T. T. Warner, 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, https://doi.org/10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2013: Modulation of the diurnal cycle of warm-season precipitation by short-wave troughs. J. Atmos. Sci., 70, 17101726, https://doi.org/10.1175/JAS-D-12-0181.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., T.-C. Chen, and J. Correia, 2011a: Climatology of summer midtropospheric perturbations in the US northern plains. Part I: Influence on northwest flow severe weather outbreaks. Climate Dyn., 36, 793810, https://doi.org/10.1007/s00382-009-0696-3.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., T.-C. Chen, and E. S. Takle, 2011b: Climatology of summer midtropospheric perturbations in the US northern plains. Part II: Large-scale effects of the Rocky Mountains on genesis. Climate Dyn., 36, 12211237, https://doi.org/10.1007/s00382-010-0765-7.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2004: “A theory for strong long-lived squall lines” revisited. J. Atmos. Sci., 61, 361382, https://doi.org/10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2017: Convective self-aggregation in numerical simulations: A review. Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity, Springer, 1–25.

  • Yang, Q., and A. J. Majda, 2017: Upscale impact of mesoscale disturbances of tropical convection on synoptic-scale equatorial waves in two-dimensional flows. J. Atmos. Sci., 74, 30993120, https://doi.org/10.1175/JAS-D-17-0068.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., and A. J. Majda, 2018: Upscale impact of mesoscale disturbances of tropical convection on convectively coupled Kelvin waves. J. Atmos. Sci., 75, 85111, https://doi.org/10.1175/JAS-D-17-0178.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., and A. J. Majda, 2019: Upscale impact of mesoscale disturbances of tropical convection on 2-day waves. J. Atmos. Sci., 76, 171194, https://doi.org/10.1175/JAS-D-18-0049.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., R. A. Houze Jr., L. R. Leung, and Z. Feng, 2017: Environments of long-lived mesoscale convective systems over the central United States in convection permitting climate simulations. J. Geophys. Res. Atmos., 122, 13288, https://doi.org/10.1002/2017JD027033.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., A. J. Majda, and N. D. Brenowitz, 2019a: Effects of rotation on the multiscale organization of convection in a global 2D cloud-resolving model. J. Atmos. Sci., 76, 36693696, https://doi.org/10.1175/JAS-D-19-0041.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., A. J. Majda, and M. W. Moncrieff, 2019b: Upscale impact of mesoscale convective systems and its parameterization in an idealized GCM for an MJO analog above the equator. J. Atmos. Sci., 76, 865892, https://doi.org/10.1175/JAS-D-18-0260.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., L. R. Leung, Z. Feng, F. Song, and X. Chen, 2021: A simple Lagrangian parcel model for the initiation of summertime mesoscale convective systems over the central United States. J. Atmos. Sci., 78, 35373558, https://doi.org/10.1175/JAS-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., L. R. Leung, Z. Feng, and X. Chen, 2023: Impact of global warming on U.S. summertime mesoscale convective systems: A simple Lagrangian parcel model perspective. J. Climate, 36, 45974618, https://doi.org/10.1175/JCLI-D-22-0291.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and K. Emanuel, 1991: An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377389, https://doi.org/10.1175/1520-0469(1991)048<0377:AIMOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., 2022: An analytical model of two-dimensional mesoscale circulation and associated properties across squall lines. AGU Adv., 3, e2022AV000726, https://doi.org/10.1029/2022AV000726.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., W. Lin, Y. Lin, M. Zhang, H. Yu, K. Cao, and W. Xue, 2019: Prediction of tropical cyclone genesis from mesoscale convective systems using machine learning. Wea. Forecasting, 34, 10351049, https://doi.org/10.1175/WAF-D-18-0201.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 851 851 47
Full Text Views 301 301 15
PDF Downloads 330 330 18