The Role of Subtropical Rossby Waves in Amplifying the Divergent Circulation of the Madden–Julian Oscillation

Pragallva Barpanda aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Pragallva Barpanda in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4252-1990
,
Stefan N. Tulich aCooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Stefan N. Tulich in
Current site
Google Scholar
PubMed
Close
,
Juliana Dias bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by Juliana Dias in
Current site
Google Scholar
PubMed
Close
, and
George N. Kiladis bNOAA/Physical Sciences Laboratory, Boulder, Colorado

Search for other papers by George N. Kiladis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The composite structure of the Madden–Julian oscillation (MJO) has long been known to feature pronounced Rossby gyres in the subtropical upper troposphere, whose existence can be interpreted as the forced response to convective heating anomalies in the presence of a subtropical westerly jet. The question of interest here is whether these forced gyre circulations have any subsequent effects on divergence patterns in the tropics and the Kelvin-mode component of the MJO. A nonlinear spherical shallow water model is used to investigate how the introduction of different background jet profiles affects the model’s steady-state response to an imposed MJO-like stationary thermal forcing. Results show that a stronger jet leads to a stronger Kelvin-mode response in the tropics up to a critical jet speed, along with stronger divergence anomalies in the vicinity of the forcing. To understand this behavior, additional calculations are performed in which a localized vorticity forcing is imposed in the extratropics, without any thermal forcing in the tropics. The response is once again seen to include pronounced equatorial Kelvin waves, provided the jet is of sufficient amplitude. A detailed analysis of the vorticity budget reveals that the zonal-mean zonal wind shear plays a key role in amplifying the Kelvin-mode divergent winds near the equator, with the effects of nonlinearities being of negligible importance. These results help to explain why the MJO tends to be strongest during boreal winter when the Indo-Pacific jet is typically at its strongest.

Significance Statement

The MJO is a planetary-scale convectively coupled equatorial disturbance that serves as a primary source of atmospheric predictability on intraseasonal time scales (30–90 days). Due to its dominance and spontaneous recurrence, the MJO has a significant global impact, influencing hurricanes in the tropics, storm tracks, and atmosphere blocking events in the midlatitudes, and even weather systems near the poles. Despite steady improvements in subseasonal-to-seasonal (S2S) forecast models, the MJO prediction skill has still not reached its maximum potential. The root of this challenge is partly due to our lack of understanding of how the MJO interacts with the background mean flow. In this work, we use a simple one-layer atmospheric model with idealized heating and vorticity sources to understand the impact of the subtropical jet on the MJO amplitude and its horizontal structure.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pragallva Barpanda, pragallva.barpanda@uib.no

Abstract

The composite structure of the Madden–Julian oscillation (MJO) has long been known to feature pronounced Rossby gyres in the subtropical upper troposphere, whose existence can be interpreted as the forced response to convective heating anomalies in the presence of a subtropical westerly jet. The question of interest here is whether these forced gyre circulations have any subsequent effects on divergence patterns in the tropics and the Kelvin-mode component of the MJO. A nonlinear spherical shallow water model is used to investigate how the introduction of different background jet profiles affects the model’s steady-state response to an imposed MJO-like stationary thermal forcing. Results show that a stronger jet leads to a stronger Kelvin-mode response in the tropics up to a critical jet speed, along with stronger divergence anomalies in the vicinity of the forcing. To understand this behavior, additional calculations are performed in which a localized vorticity forcing is imposed in the extratropics, without any thermal forcing in the tropics. The response is once again seen to include pronounced equatorial Kelvin waves, provided the jet is of sufficient amplitude. A detailed analysis of the vorticity budget reveals that the zonal-mean zonal wind shear plays a key role in amplifying the Kelvin-mode divergent winds near the equator, with the effects of nonlinearities being of negligible importance. These results help to explain why the MJO tends to be strongest during boreal winter when the Indo-Pacific jet is typically at its strongest.

Significance Statement

The MJO is a planetary-scale convectively coupled equatorial disturbance that serves as a primary source of atmospheric predictability on intraseasonal time scales (30–90 days). Due to its dominance and spontaneous recurrence, the MJO has a significant global impact, influencing hurricanes in the tropics, storm tracks, and atmosphere blocking events in the midlatitudes, and even weather systems near the poles. Despite steady improvements in subseasonal-to-seasonal (S2S) forecast models, the MJO prediction skill has still not reached its maximum potential. The root of this challenge is partly due to our lack of understanding of how the MJO interacts with the background mean flow. In this work, we use a simple one-layer atmospheric model with idealized heating and vorticity sources to understand the impact of the subtropical jet on the MJO amplitude and its horizontal structure.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Pragallva Barpanda, pragallva.barpanda@uib.no

Supplementary Materials

    • Supplemental Materials (PDF 0.8463 MB)
Save
  • Adames, A. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the vertical velocity and divergence fields in the MJO. J. Atmos. Sci., 71, 46614681, https://doi.org/10.1175/JAS-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., J. D. Neelin, and Á. F. Adames, 2021: Quasi-equilibrium and weak temperature gradient balances in an equatorial beta-plane model. J. Atmos. Sci., 78, 209227, https://doi.org/10.1175/JAS-D-20-0184.1.

    • Search Google Scholar
    • Export Citation
  • Ahn, M.-S., and Coauthors, 2020: MJO propagation across the Maritime Continent: Are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250, https://doi.org/10.1029/2020GL087250.

    • Search Google Scholar
    • Export Citation
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, J., V. Dixit, and S. C. Sherwood, 2022: Zonal temperature gradients in the tropical free troposphere. J. Climate, 35, 79377948, https://doi.org/10.1175/JCLI-D-22-0145.1.

    • Search Google Scholar
    • Export Citation
  • Bao, M., and D. L. Hartmann, 2014: The response to MJO-like forcing in a nonlinear shallow-water model. Geophys. Res. Lett., 41, 13221328, https://doi.org/10.1002/2013GL057683.

    • Search Google Scholar
    • Export Citation
  • Barnes, E. A., and J. A. Screen, 2015: The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? Wiley Interdiscip. Rev.: Climate Change, 6, 277286, https://doi.org/10.1002/wcc.337.

    • Search Google Scholar
    • Export Citation
  • Berrington, A. H., N. Sakaeda, J. Dias, and G. N. Kiladis, 2022: Relationships between the eastward propagation of the Madden–Julian oscillation and its circulation structure. J. Geophys. Res. Atmos., 127, e2021JD035806, https://doi.org/10.1029/2021JD035806.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1982: Saturation point analysis of moist convective overturning. J. Atmos. Sci., 39, 14841505, https://doi.org/10.1175/1520-0469(1982)039<1484:SPAOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., and H. Teng, 2017: Tropospheric waveguide teleconnections and their seasonality. J. Atmos. Sci., 74, 15131532, https://doi.org/10.1175/JAS-D-16-0305.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and A. H. Sobel, 2003: The Gill model and the weak temperature gradient approximation. J. Atmos. Sci., 60, 451460, https://doi.org/10.1175/1520-0469(2003)060<0451:TGMATW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carlson, H., and R. Caballero, 2016: Enhanced MJO and transition to superrotation in warm climates. J. Adv. Model. Earth Syst., 8, 304318, https://doi.org/10.1002/2015MS000615.

    • Search Google Scholar
    • Export Citation
  • Castanheira, J. M., and C. A. F. Marques, 2021: The equatorial wave skeleton of the Madden–Julian oscillation. Quart. J. Roy. Meteor. Soc., 147, 37783788, https://doi.org/10.1002/qj.4156.

    • Search Google Scholar
    • Export Citation
  • Chao, W. C., 1987: On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44, 19401949, https://doi.org/10.1175/1520-0469(1987)044<1940:OTOOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cheng, Y.-M., S. Tulich, G. N. Kiladis, and J. Dias, 2022: Two extratropical pathways to forcing tropical convective disturbances. J. Climate, 35, 65876609, https://doi.org/10.1175/JCLI-D-22-0171.1.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franzke, C. L. E., D. Jelic, S. Lee, and S. B. Feldstein, 2019: Systematic decomposition of the MJO and its Northern Hemispheric extratropical response into Rossby and inertio-gravity components. Quart. J. Roy. Meteor. Soc., 145, 11471164, https://doi.org/10.1002/qj.3484.

    • Search Google Scholar
    • Export Citation
  • Frederiksen, J. S., and C. S. Frederiksen, 1997: Mechanisms of the formation of intraseasonal oscillations and Australian monsoon disturbances: The roles of convection, barotropic and baroclinic instability. Contrib. Atmos. Phys., 70, 3956.

    • Search Google Scholar
    • Export Citation
  • Fulton, S. R., and W. H. Schubert, 1985: Vertical normal mode transforms: Theory and application. Mon. Wea. Rev., 113, 647658, https://doi.org/10.1175/1520-0493(1985)113<0647:VNMTTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011a: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 12731289, https://doi.org/10.1175/2011JAS3665.1.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., and D. L. Hartmann, 2011b: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part II: Perpetual winter WACCM runs. J. Atmos. Sci., 68, 20262041, https://doi.org/10.1175/2011JAS3702.1.

    • Search Google Scholar
    • Export Citation
  • Gehne, M., and R. Kleeman, 2012: Spectral analysis of tropical atmospheric dynamical variables using a linear shallow-water modal decomposition. J. Atmos. Sci., 69, 23002316, https://doi.org/10.1175/JAS-D-10-05008.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462, https://doi.org/10.1002/qj.49710644905.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., J. A. Anstey, Y. Kawatani, H. Lu, S. Osprey, and V. Schenzinger, 2018: Surface impacts of the quasi biennial oscillation. Atmos. Chem. Phys., 18, 82278247, https://doi.org/10.5194/acp-18-8227-2018.

    • Search Google Scholar
    • Export Citation
  • Haertel, P., 2022: Kelvin and Rossby wave contributions to the mechanisms of the Madden-Julian oscillation. Geosciences, 12, 314, https://doi.org/10.3390/geosciences12090314.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J., H. H. Le, and S. Leroux, 2020: The extratropical response to a developing MJO: Forecast and climate simulations with the DREAM model. Climate Dyn., 55, 813829, https://doi.org/10.1007/s00382-020-05299-y.

    • Search Google Scholar
    • Export Citation
  • Hayashi, M., and H. Itoh, 2017: A new mechanism of the slow eastward propagation of unstable disturbances with convection in the tropics: Implications for the MJO. J. Atmos. Sci., 74, 37493769, https://doi.org/10.1175/JAS-D-16-0300.1.

    • Search Google Scholar
    • Export Citation
  • Hendon, H. H., and M. L. Salby, 1994: The life cycle of the Madden–Julian oscillation. J. Atmos. Sci., 51, 22252237, https://doi.org/10.1175/1520-0469(1994)051<2225:TLCOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and G.-Y. Yang, 2000: The equatorial response to higher-latitude forcing. J. Atmos. Sci., 57, 11971213, https://doi.org/10.1175/1520-0469(2000)057<1197:TERTHL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hsieh, T.-L., C.-Y. Chang, I. M. Held, and P. Zurita-Gotor, 2021: Nonlinear generation of long waves and the reversal of eddy momentum fluxes in a two-layer quasigeostrophic model. J. Atmos. Sci., 78, 35253536, https://doi.org/10.1175/JAS-D-20-0368.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406, https://doi.org/10.1175/1520-0442(1996)009<2386:GVOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., and Coauthors, 2020: Fifty years of research on the Madden–Julian oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    • Search Google Scholar
    • Export Citation
  • Jin, F., and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319, https://doi.org/10.1175/1520-0469(1995)052<0307:TDRTTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1980: Effect of zonal flows on the free oscillations of a barotropic atmosphere. J. Atmos. Sci., 37, 917929, https://doi.org/10.1175/1520-0469(1980)037<0917:EOZFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., and K. M. Weickmann, 1992: Circulation anomalies associated with tropical convection during northern winter. Mon. Wea. Rev., 120, 19001923, https://doi.org/10.1175/1520-0493(1992)120<1900:CAAWTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., and C. Zhang, 2021: Core dynamics of the MJO. J. Atmos. Sci., 78, 229248, https://doi.org/10.1175/JAS-D-20-0193.1.

  • Kitsios, V., T. J. O’Kane, and N. Žagar, 2019: A reduced-order representation of the Madden–Julian oscillation based on reanalyzed normal mode coherences. J. Atmos. Sci., 76, 24632480, https://doi.org/10.1175/JAS-D-18-0197.1.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., and Coauthors, 2022: The intricacies of identifying equatorial waves. Quart. J. Roy. Meteor. Soc., 148, 28142852, https://doi.org/10.1002/qj.4338.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436, https://doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosovelj, K., F. Kucharski, F. Molteni, and N. Žagar, 2019: Modal decomposition of the global response to tropical heating perturbations resembling MJO. J. Atmos. Sci., 76, 14571469, https://doi.org/10.1175/JAS-D-18-0203.1.

    • Search Google Scholar
    • Export Citation
  • Kraucunas, I., and D. L. Hartmann, 2007: Tropical stationary waves in a nonlinear shallow-water model with realistic basic states. J. Atmos. Sci., 64, 25402557, https://doi.org/10.1175/JAS3920.1.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., and T. J. Phillips, 1986: Coherent fluctuations of extratropical geopotential height and tropical convection in intraseasonal time scales. J. Atmos. Sci., 43, 11641181, https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., and K.-M. Lau, 1986: The structure and propagation of intraseasonal oscillations appearing in a GFDL general circulation model. J. Atmos. Sci., 43, 20232047, https://doi.org/10.1175/1520-0469(1986)043<2023:TSAPOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and D. L. Hartmann, 1984: An observational study of tropical–midlatitude interaction on intraseasonal time scales during winter. J. Atmos. Sci., 41, 33333350, https://doi.org/10.1175/1520-0469(1984)041<3333:AOSOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and G. Brunet, 2011: Impact of the North Atlantic Oscillation on the forecast skill of the Madden-Julian oscillation. Geophys. Res. Lett., 38, L02802, https://doi.org/10.1029/2010GL046131.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and J. Derome, 2007: Intraseasonal variability in a dry atmospheric model. J. Atmos. Sci., 64, 24222441, https://doi.org/10.1175/JAS3955.1.

    • Search Google Scholar
    • Export Citation
  • Lin, H., G. Brunet, and R. Mo, 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839, https://doi.org/10.1175/2010MWR3363.1.

    • Search Google Scholar
    • Export Citation
  • Lin, J.-L., M. Zhang, and B. Mapes, 2005: Zonal momentum budget of the Madden–Julian oscillation: The source and strength of equivalent linear damping. J. Atmos. Sci., 62, 21722188, https://doi.org/10.1175/JAS3471.1.

    • Search Google Scholar
    • Export Citation
  • Ma, D., and Z. Kuang, 2016: A mechanism-denial study on the Madden–Julian oscillation with reduced interference from mean state changes. Geophys. Res. Lett., 43, 29892997, https://doi.org/10.1002/2016GL067702.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and J. A. Biello, 2003: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci., 60, 18091821, https://doi.org/10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, https://doi.org/10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martin, Z., C. Orbe, S. Wang, and A. Sobel, 2021: The MJO–QBO relationship in a GCM with stratospheric nudging. J. Climate, 34, 46034624, https://doi.org/10.1175/JCLI-D-20-0636.1.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011, https://doi.org/10.1256/qj.02.123.

    • Search Google Scholar
    • Export Citation
  • Monteiro, J. M., A. F. Adames, J. M. Wallace, and J. S. Sukhatme, 2014: Interpreting the upper level structure of the Madden–Julian oscillation. Geophys. Res. Lett., 41, 91589165, https://doi.org/10.1002/2014GL062518.

    • Search Google Scholar
    • Export Citation
  • Moon, W., G. E. Manucharyan, and H. A. Dijkstra, 2022: Baroclinic instability and large-scale wave propagation in a planetary-scale atmosphere. Quart. J. Roy. Meteor. Soc., 148, 809825, https://doi.org/10.1002/qj.4232.

    • Search Google Scholar
    • Export Citation
  • Potter, S. F., G. K. Vallis, and J. L. Mitchell, 2014: Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. J. Atmos. Sci., 71, 596614, https://doi.org/10.1175/JAS-D-13-0150.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and C. Zhang, 2010: A case study of the mechanics of extratropical influence on the initiation of the Madden–Julian oscillation. J. Atmos. Sci., 67, 515528, https://doi.org/10.1175/2009JAS3059.1.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and T. Li, 2013: Relative roles of circumnavigating waves and extratropics on the MJO and its relationship with the mean state. J. Atmos. Sci., 70, 876893, https://doi.org/10.1175/JAS-D-12-0153.1.

    • Search Google Scholar
    • Export Citation
  • Rostami, M., and V. Zeitlin, 2019: Eastward-moving convection-enhanced modons in shallow water in the equatorial tangent plane. Phys. Fluids, 31, 021701, https://doi.org/10.1063/1.5080415.

    • Search Google Scholar
    • Export Citation
  • Rostami, M., and V. Zeitlin, 2020: Can geostrophic adjustment of baroclinic disturbances in the tropical atmosphere explain MJO events? Quart. J. Roy. Meteor. Soc., 146, 39984013, https://doi.org/10.1002/qj.3884.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047<0357:DCADSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2014: The role of interactions between multiscale circulations on the observed zonally averaged zonal wind variability associated with the Madden–Julian oscillation. J. Atmos. Sci., 71, 38163836, https://doi.org/10.1175/JAS-D-13-0304.1.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2015: The development of upper-tropospheric wind over the Western Hemisphere in association with MJO convective initiation. J. Atmos. Sci., 72, 31383160, https://doi.org/10.1175/JAS-D-14-0293.1.

    • Search Google Scholar
    • Export Citation
  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., G. J. Berry, K. Fodor, and M. J. Reeder, 2021: On the relationship between the Madden–Julian oscillation and the Hadley and Walker circulations. J. Geophys. Res. Atmos., 126, e2019JD032117, https://doi.org/10.1029/2019JD032117.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and H.-J. Lee, 2017: Mechanisms for a PNA-like teleconnection pattern in response to the MJO. J. Atmos. Sci., 74, 17671781, https://doi.org/10.1175/JAS-D-16-0343.1.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., and L. M. Polvani, 2011: Equatorial superrotation on tidally locked exoplanets. Astrophys. J., 738, 71, https://doi.org/10.1088/0004-637X/738/1/71.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stone, P. H., and J. H. Carlson, 1979: Atmospheric lapse rate regimes and their parameterization. J. Atmos. Sci., 36, 415423, https://doi.org/10.1175/1520-0469(1979)036<0415:ALRRAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straus, D. M., and R. S. Lindzen, 2000: Planetary-scale baroclinic instability and the MJO. J. Atmos. Sci., 57, 36093626, https://doi.org/10.1175/1520-0469(2000)057<3609:PSBIAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tseng, K.-C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear Rossby wave theory. J. Climate, 32, 531548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    • Search Google Scholar
    • Export Citation
  • Tulich, S. N., and G. N. Kiladis, 2021: On the regionality of moist Kelvin waves and the MJO: The critical role of the background zonal flow. J. Adv. Model. Earth Syst., 13, e2021MS002528, https://doi.org/10.1029/2021MS002528.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial β-plane. J. Atmos. Sci., 47, 397413, https://doi.org/10.1175/1520-0469(1990)047<0397:DOTCMK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449467, https://doi.org/10.1175/1520-0469(1996)053<0449:LFEWIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., and P. K. Smolarkiewicz, 2010: A nonlinear perspective on the dynamics of the MJO: Idealized large-eddy simulations. J. Atmos. Sci., 67, 12021217, https://doi.org/10.1175/2009JAS3160.1.

    • Search Google Scholar
    • Export Citation
  • Weickmann, K. M., G. R. Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and 250 mb streamfunction during northern winter. Mon. Wea. Rev., 113, 941961, https://doi.org/10.1175/1520-0493(1985)113<0941:IDFOOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, S. Henderson, and M. Branson, 2017: Climate change and the Madden–Julian oscillation: A vertically resolved weak temperature gradient analysis. J. Adv. Model. Earth Syst., 9, 307331, https://doi.org/10.1002/2016MS000843.

    • Search Google Scholar
    • Export Citation
  • Xu, K.-M., and K. A. Emanuel, 1989: Is the tropical atmosphere conditionally unstable? Mon. Wea. Rev., 117, 14711479, https://doi.org/10.1175/1520-0493(1989)117<1471:ITTACU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., B. Hoskins, and J. Slingo, 2003: Convectively coupled equatorial waves: A new methodology for identifying wave structures in observational data. J. Atmos. Sci., 60, 16371654, https://doi.org/10.1175/1520-0469(2003)060<1637:CCEWAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and J. J. Tribbia, 2017: Tropical atmospheric Madden–Julian oscillation: A strongly nonlinear free solitary Rossby wave? J. Atmos. Sci., 74, 34733489, https://doi.org/10.1175/JAS-D-16-0319.1.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., and C. L. E. Franzke, 2015: Systematic decomposition of the Madden-Julian oscillation into balanced and inertio-gravity components. Geophys. Res. Lett., 42, 68296835, https://doi.org/10.1002/2015GL065130.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., A. Kasahara, K. Terasaki, J. Tribbia, and H. Tanaka, 2015: Normal-mode function representation of global 3-D data sets: Open-access software for the atmospheric research community. Geosci. Model Dev., 8, 11691195, https://doi.org/10.5194/gmd-8-1169-2015.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., F. Lunkeit, F. Sielmann, and W. Xiao, 2022: Three-dimensional structure of the equatorial Kelvin wave: Vertical structure functions, equivalent depths, and frequency and wavenumber spectra. J. Climate, 35, 22092230, https://doi.org/10.1175/JCLI-D-21-0342.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and P. J. Webster, 1992: Laterally forced equatorial perturbations in a linear model. Part I: Stationary transient forcing. J. Atmos. Sci., 49, 585607, https://doi.org/10.1175/1520-0469(1992)049<0585:LFEPIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Á. F. Adames, B. Khouider, B. Wang, and D. Yang, 2020: Four theories of the Madden–Julian oscillation. Rev. Geophys., 58, e2019RG000685, https://doi.org/10.1029/2019RG000685.

    • Search Google Scholar
    • Export Citation
  • Zurita-Gotor, P., and I. M. Held, 2018: The finite-amplitude evolution of mixed Kelvin–Rossby wave instability and equatorial superrotation in a shallow-water model and an idealized GCM. J. Atmos. Sci., 75, 22992316, https://doi.org/10.1175/JAS-D-17-0386.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 673 673 64
Full Text Views 338 338 28
PDF Downloads 315 315 32