Decomposition of Vertical Velocity and Its Zonal Wavenumber Kinetic Energy Spectra in the Hydrostatic Atmosphere

Nedjeljka Žagar aMeteorological Institute, Universität Hamburg, Hamburg, Germany

Search for other papers by Nedjeljka Žagar in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7256-5073
,
Valentino Neduhal aMeteorological Institute, Universität Hamburg, Hamburg, Germany

Search for other papers by Valentino Neduhal in
Current site
Google Scholar
PubMed
Close
,
Sergiy Vasylkevych aMeteorological Institute, Universität Hamburg, Hamburg, Germany

Search for other papers by Sergiy Vasylkevych in
Current site
Google Scholar
PubMed
Close
,
Žiga Zaplotnik bFaculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
cEuropean Centre for Medium-Range Weather Forecasts, Bonn, Germany

Search for other papers by Žiga Zaplotnik in
Current site
Google Scholar
PubMed
Close
, and
Hiroshi L. Tanaka dCenter for Computational Sciences, Tsukuba University, Tsukuba, Japan

Search for other papers by Hiroshi L. Tanaka in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spectrum of kinetic energy of vertical motions (VKE) is less well understood compared to the kinetic energy spectrum of horizontal motions (HKE). One challenge that has limited progress in describing the VKE spectrum is a lack of a unified approach to the decomposition of vertical velocities associated with the Rossby motions and inertia–gravity (IG) wave flows. This paper presents such a unified approach using a linear Rossby–IG vertical velocity normal-mode decomposition appropriate for a spherical, hydrostatic atmosphere. New theoretical developments show that for every zonal wavenumber k, the limit VKE is proportional to the total mechanical energy and to the square of the frequency of the normal mode. The theory predicts a VKE ∝ k−5 and a VKE ∝ k1/3 power law for the Rossby and IG waves, assuming a k−3 and a k−5/3 power law for the Rossby and IG HKE spectra, respectively. The Kelvin and mixed Rossby–gravity wave VKE spectra are predicted to follow k−1 and k−5 power laws, respectively. The VKE spectra for ERA5 data from August 2018 show that the Rossby VKE spectra approximately follow the predicted a k−5 power law. The expected k1/3 power law for the gravity wave VKE spectrum is found only in the SH midlatitude stratosphere for k ≈ 10–60. The inertial range IG VKE spectra in the tropical and midlatitude troposphere reflect a mixture of ageostrophic and convection-coupled dynamics and have slopes between −1 and −1/3, likely associated with too steep IG HKE spectra. The forcing by quasigeostrophic ageostrophic motions is seen as an IG VKE peak at synoptic scales in the SH upper troposphere, which gradually moves to planetary scales in the stratosphere.

Significance Statement

The spectrum of kinetic energy of vertical motions (VKE) is less well understood compared to the kinetic energy spectrum of horizontal motions. One challenge is a lack of a unified approach to the decomposition of vertical velocities associated with the Rossby motions and inertia–gravity (IG) wave flows. This paper presents such a unified approach using a linear Rossby–IG vertical velocity normal-mode decomposition appropriate for a spherical, hydrostatic atmosphere. It is shown that for every zonal wavenumber, the limit VKE is proportional to the total mechanical energy and to the square of the frequency of the normal mode. The theory is successfully applied to the ERA5 data. It leads the way for a more accurate computation of momentum fluxes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nedjeljka Žagar, nedjeljka.zagar@uni-hamburg.de

Abstract

The spectrum of kinetic energy of vertical motions (VKE) is less well understood compared to the kinetic energy spectrum of horizontal motions (HKE). One challenge that has limited progress in describing the VKE spectrum is a lack of a unified approach to the decomposition of vertical velocities associated with the Rossby motions and inertia–gravity (IG) wave flows. This paper presents such a unified approach using a linear Rossby–IG vertical velocity normal-mode decomposition appropriate for a spherical, hydrostatic atmosphere. New theoretical developments show that for every zonal wavenumber k, the limit VKE is proportional to the total mechanical energy and to the square of the frequency of the normal mode. The theory predicts a VKE ∝ k−5 and a VKE ∝ k1/3 power law for the Rossby and IG waves, assuming a k−3 and a k−5/3 power law for the Rossby and IG HKE spectra, respectively. The Kelvin and mixed Rossby–gravity wave VKE spectra are predicted to follow k−1 and k−5 power laws, respectively. The VKE spectra for ERA5 data from August 2018 show that the Rossby VKE spectra approximately follow the predicted a k−5 power law. The expected k1/3 power law for the gravity wave VKE spectrum is found only in the SH midlatitude stratosphere for k ≈ 10–60. The inertial range IG VKE spectra in the tropical and midlatitude troposphere reflect a mixture of ageostrophic and convection-coupled dynamics and have slopes between −1 and −1/3, likely associated with too steep IG HKE spectra. The forcing by quasigeostrophic ageostrophic motions is seen as an IG VKE peak at synoptic scales in the SH upper troposphere, which gradually moves to planetary scales in the stratosphere.

Significance Statement

The spectrum of kinetic energy of vertical motions (VKE) is less well understood compared to the kinetic energy spectrum of horizontal motions. One challenge is a lack of a unified approach to the decomposition of vertical velocities associated with the Rossby motions and inertia–gravity (IG) wave flows. This paper presents such a unified approach using a linear Rossby–IG vertical velocity normal-mode decomposition appropriate for a spherical, hydrostatic atmosphere. It is shown that for every zonal wavenumber, the limit VKE is proportional to the total mechanical energy and to the square of the frequency of the normal mode. The theory is successfully applied to the ERA5 data. It leads the way for a more accurate computation of momentum fluxes.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Nedjeljka Žagar, nedjeljka.zagar@uni-hamburg.de
Save
  • Bacmeister, J. T., S. D. Eckermann, P. A. Newman, L. Lait, K. R. Chan, M. Loewenstein, M. H. Proffitt, and B. L. Gary, 1996: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J. Geophys. Res., 101, 94419470, https://doi.org/10.1029/95JD03835.

    • Search Google Scholar
    • Export Citation
  • Bergman, J. W., and M. L. Salby, 1994: Equatorial wave activity derived from fluctuations in observed convection. J. Atmos. Sci., 51, 37913806, https://doi.org/10.1175/1520-0469(1994)051<3791:EWADFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boyd, J. P., and C. Zhou, 2008: Kelvin waves in the nonlinear shallow water equations on the sphere: Nonlinear travelling waves and the corner wave bifurcation. J. Fluid Mech., 617, 187205, https://doi.org/10.1017/S0022112008003959.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., and P. G. Drazin, 1961: Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66, 83109, https://doi.org/10.1029/JZ066i001p00083.

    • Search Google Scholar
    • Export Citation
  • Cohn, S. E., and D. P. Dee, 1989: An analysis of the vertical structure equation for arbitrary thermal profiles. Quart. J. Roy. Meteor. Soc., 115, 143171, https://doi.org/10.1002/qj.49711548508.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and T. Selz, 2018: Mesoscale dynamical regimes in the midlatitudes. Geophys. Res. Lett., 45, 410417, https://doi.org/10.1002/2017GL076174.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., and Coauthors, 2018: Gravity waves excited during a minor sudden stratospheric warming. Atmos. Chem. Phys., 18, 12 91512 931, https://doi.org/10.5194/acp-18-12915-2018.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., P. Bechtold, and U. Schumann, 2022: High-resolution aircraft observations of turbulence and waves in the free atmosphere and comparison with global model predictions. J. Geophys. Res. Atmos., 127, e2022JD036654, https://doi.org/https://doi.org/10.1029/2022JD036654.

    • Search Google Scholar
    • Export Citation
  • Dueben, P. D., N. Wedi, S. Saarinen, and C. Zeman, 2020: Global simulations of the atmosphere at 1.45 km grid-spacing with the Integrated Forecasting System. J. Meteor. Soc. Japan, 98, 551572, https://doi.org/10.2151/jmsj.2020-016.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1984: The dynamical balance of a general circulation model. Mon. Wea. Rev., 112, 24392454, https://doi.org/10.1175/1520-0493(1984)112<2439:TDBOAG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation. J. Atmos. Sci., 49, 111127, https://doi.org/10.1175/1520-0469(1992)049<0111:SOMVOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Haurwitz, B., 1940: The motion of atmospheric disturbances. J. Mar. Res., 3, 3550.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., I. Draghici, and H. C. Davies, 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, https://doi.org/10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Hough, S. S., 1898: On the application of harmonic analysis to the dynamical theory of the tides.—Part II. On the general integration of Laplace’s dynamical equations. Philos. Trans. Roy. Soc., A191, 139185, https://doi.org/10.1098/rsta.1898.0005.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1978: Further studies on a spectral model of the global barotropic primitive equations with Hough harmonic expansions. J. Atmos. Sci., 35, 20432051, https://doi.org/10.1175/1520-0469(1978)035<2043:FSOASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 1984: The linear response of a stratified global atmosphere to a tropical thermal forcing. J. Atmos. Sci., 41, 22172237, https://doi.org/10.1175/1520-0469(1984)041<2217:TLROAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kasahara, A., 2020: 3D normal mode functions (NMFs) of a global baroclinic atmospheric model. Modal View of Atmospheric Variability: Applications of Normal-Mode Function Decomposition in Weather and Climate Research, N. Žagar and J. Tribbia, Eds., Mathematics of Planet Earth Series, Vol. 8, Springer, 1–62.

  • Knippertz, P., and Coauthors, 2022: The intricacies of identifying equatorial waves. Quart. J. Roy. Meteor. Soc., 148, 28142852, https://doi.org/10.1002/qj.4338.

    • Search Google Scholar
    • Export Citation
  • Ko, S. D., J. J. Tribbia, and J. P. Boyd, 1989: Energetics analysis of a multilevel global spectral model. Part I: Balanced energy and transient energy. Mon. Wea. Rev., 117, 19411953, https://doi.org/10.1175/1520-0493(1989)117<1941:EAOAMG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, https://doi.org/10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., 2019: Quantifying gravity wave forcing using scale invariance. Nat. Commun., 10, 2605, https://doi.org/10.1038/s41467-019-10527-z.

    • Search Google Scholar
    • Export Citation
  • Longuet-Higgins, M. S., 1968: The eigenfunctions of Laplace’s tidal equations over a sphere. Philos. Trans. Roy. Soc., A262, 511607, https://doi.org/10.1098/rsta.1968.0003.

    • Search Google Scholar
    • Export Citation
  • Matsuno, T., 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 2543, https://doi.org/10.2151/jmsj1965.44.1_25.

    • Search Google Scholar
    • Export Citation
  • Morfa, Y. A., and C. C. Stephan, 2023: The relationship between horizontal and vertical velocity wavenumber spectra in global storm-resolving simulations. J. Atmos. Sci., 80, 10871105, https://doi.org/10.1175/JAS-D-22-0105.1.

    • Search Google Scholar
    • Export Citation
  • Müller, S. K., E. Manzini, M. Giorgetta, K. Sato, and T. Nasuno, 2018: Convectively generated gravity waves in high resolution models of tropical dynamics. J. Adv. Model. Earth Syst., 10, 25642588, https://doi.org/10.1029/2018MS001390.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2002: An Introduction to Atmospheric Gravity Waves. International Geophysics Series, Vol. 85, Academic Press, 276 pp.

  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paldor, N., I. Fouxon, O. Shamir, and C. I. Garfinkel, 2018: The mixed Rossby–gravity wave on the spherical Earth. Quart. J. Roy. Meteor. Soc., 144, 18201830, https://doi.org/10.1002/qj.3354.

    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., N. Wedi, and Y.-H. Kim, 2022: Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization. Quart. J. Roy. Meteor. Soc., 148, 233251, https://doi.org/10.1002/qj.4202.

    • Search Google Scholar
    • Export Citation
  • Rodda, C., and U. Harlander, 2020: Transition from geostrophic flows to inertia–gravity waves in the spectrum of a differentially heated rotating annulus experiment. J. Atmos. Sci., 77, 27932806, https://doi.org/10.1175/JAS-D-20-0033.1.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 2019: The horizontal spectrum of vertical velocities near the tropopause from global to gravity wave scales. J. Atmos. Sci., 76, 38473862, https://doi.org/10.1175/JAS-D-19-0160.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., and D. M. Burridge, 1981: An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Wea. Rev., 109, 758766, https://doi.org/10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulation. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Search Google Scholar
    • Export Citation
  • Staniforth, A., M. Béland, and J. Côté, 1985: An analysis of the vertical structure equation in sigma coordinates. Atmos.–Ocean, 23, 323358, https://doi.org/10.1080/07055900.1985.9649232.

    • Search Google Scholar
    • Export Citation
  • Stepanyuk, O., J. Räisänen, V. A. Sinclair, and H. Järvinen, 2017: Factors affecting atmospheric vertical motions as analyzed with a generalized omega equation and the OpenIFS model. Tellus, 69A, 1271563, https://doi.org/10.1080/16000870.2016.1271563.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., N. Žagar, and T. G. Shepherd, 2021: Waves and coherent flows in the tropical atmosphere: New opportunities, old challenges. Quart. J. Roy. Meteor. Soc., 147, 25972624, https://doi.org/10.1002/qj.4109.

    • Search Google Scholar
    • Export Citation
  • Swarztrauber, P. N., 1984: FFT algorithms for vector computers. Parallel Comput., 1, 4563, https://doi.org/10.1016/S0167-8191(84)90413-7.

    • Search Google Scholar
    • Export Citation
  • Swarztrauber, P. N., and A. Kasahara, 1985: The vector harmonic analysis of Laplace’s tidal equations. SIAM J. Sci. Stat. Comput., 6, 464491, https://doi.org/10.1137/0906033.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H., 1985: Global energetics analysis by expansion into three-dimensional normal mode functions during the FGGE winter. J. Meteor. Soc. Japan, 63, 180200, https://doi.org/10.2151/jmsj1965.63.2_180.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H., and A. Yatagai, 2000: Comparative study of vertical motions in the global atmosphere evaluated by various kinematic schemes. J. Meteor. Soc. Japan, 78, 289298, https://doi.org/10.2151/jmsj1965.78.3_289.

    • Search Google Scholar
    • Export Citation
  • Tanaka, H., and N. Žagar, 2020: 3D modal variability and energy transformations on the sphere. Modal View of Atmospheric Variability: Applications of Normal-Mode Function Decomposition in Weather and Climate Research, N. Žagar and J. Tribbia, Eds., Mathematics of Planet Earth Series, Vol. 8, Springer, 121–179.

  • Taylor, G. I., 1936: The oscillations of the atmosphere. Proc. Roy. Soc. London, 156A, 318326, https://doi.org/10.1098/rspa.1936.0150.

    • Search Google Scholar
    • Export Citation
  • Terasaki, K., H. L. Tanaka, and M. Satoh, 2009: Characteristics of the kinetic energy spectrum of NICAM model atmosphere. SOLA, 5, 180183, https://doi.org/10.2151/sola.2009-046.

    • Search Google Scholar
    • Export Citation
  • Tribbia, J., 2020: Normal mode functions and initialization. Modal View of Atmospheric Variability: Applications of Normal-Mode Function Decomposition in Weather and Climate Research, N. Žagar and J. Tribbia, Eds., Mathematics of Planet Earth Series, Vol. 8, Springer, 63–78.

  • Warn, T., and R. Menard, 1986: Nonlinear balance and gravity-inertial wave saturation in a simple atmospheric model. Tellus, 38A, 285294, https://doi.org/10.3402/tellusa.v38i4.11719.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., J. Tribbia, J. L. Anderson, and K. Raeder, 2009a:Uncertainties of estimates of inertia–gravity energy in the atmosphere. Part I: Intercomparison of four analysis systems. Mon. Wea. Rev., 137, 38373857, https://doi.org/10.1175/2009MWR2815.1; Corrigendum, 138, 24762477, https://doi.org/10.1175/2010MWR3256.1.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., J. Tribbia, J. L. Anderson, and K. Raeder, 2009b: Uncertainties of estimates of inertia–gravity energy in the atmosphere. Part II: Large-scale equatorial waves. Mon. Wea. Rev., 137, 38583873, https://doi.org/10.1175/2009MWR2816.1; Corrigendum, 138, 24762477, https://doi.org/10.1175/2010MWR3256.1.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., A. Kasahara, K. Terasaki, J. Tribbia, and H. Tanaka, 2015: Normal-mode function representation of global 3D data sets: Open-access software for the atmospheric research community. Geosci. Model Dev., 8, 11691195, https://doi.org/10.5194/gmd-8-1169-2015.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., D. Jelić, M. Blaauw, and P. Bechtold, 2017: Energy spectra and inertia–gravity waves in global analyses. J. Atmos. Sci., 74, 24472466, https://doi.org/10.1175/JAS-D-16-0341.1.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., F. Lunkeit, F. Sielmann, and W. Xiao, 2022: Three-dimensional structure of the equatorial Kelvin wave: Vertical structure functions, equivalent depths, and frequency and wavenumber spectra. J. Climate, 35, 22092230, https://doi.org/10.1175/JCLI-D-21-0342.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 730 730 39
Full Text Views 313 313 19
PDF Downloads 351 351 13