Barotropic and Moisture–Vortex Growth of Monsoon Low Pressure Systems

Haochang Luo aDepartment of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by Haochang Luo in
Current site
Google Scholar
PubMed
Close
,
Ángel F. Adames Corraliza aDepartment of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
bDepartment of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Ángel F. Adames Corraliza in
Current site
Google Scholar
PubMed
Close
, and
Richard B. Rood aDepartment of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan

Search for other papers by Richard B. Rood in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

As one of the most prominent weather systems over the Indian subcontinent, the Indian summer monsoon low pressure systems (MLPSs) have been studied extensively over the past decades. However, the processes that govern the growth of the MLPSs are not well understood. To better understand these processes, we created an MLPS index using bandpass-filtered precipitation data. Lag regression maps and vertical cross sections are used to document the distribution of moisture, moist static energy (MSE), geopotential, and horizontal and vertical motions in these systems. It is shown that moisture governs the distribution of MSE and is in phase with precipitation, vertical motion, and geopotential during the MLPS cycle. Examination of the MSE budget reveals that longwave radiative heating maintains the MSE anomalies against dissipation from vertical MSE advection. These processes nearly cancel one another, and it is variations in horizontal MSE advection that are found to explain the growth and decay of the MSE anomalies. Horizontal MSE advection contributes to the growth of the MSE anomalies in MLPSs prior to the system attaining a maximum amplitude and contributes to decay thereafter. The horizontal MSE advection is largely due to meridional advection of mean state MSE by the anomalous winds, suggesting that the MSE anomalies undergo a moisture–vortex instability (MVI)-like growth. In contrast, perturbation kinetic energy (PKE) is generated through barotropic conversion. The structure, propagation, and energetics of the regressed MLPSs are consistent with both barotropic and moisture–vortex growth.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haochang Luo, hcluo@umich.edu

Abstract

As one of the most prominent weather systems over the Indian subcontinent, the Indian summer monsoon low pressure systems (MLPSs) have been studied extensively over the past decades. However, the processes that govern the growth of the MLPSs are not well understood. To better understand these processes, we created an MLPS index using bandpass-filtered precipitation data. Lag regression maps and vertical cross sections are used to document the distribution of moisture, moist static energy (MSE), geopotential, and horizontal and vertical motions in these systems. It is shown that moisture governs the distribution of MSE and is in phase with precipitation, vertical motion, and geopotential during the MLPS cycle. Examination of the MSE budget reveals that longwave radiative heating maintains the MSE anomalies against dissipation from vertical MSE advection. These processes nearly cancel one another, and it is variations in horizontal MSE advection that are found to explain the growth and decay of the MSE anomalies. Horizontal MSE advection contributes to the growth of the MSE anomalies in MLPSs prior to the system attaining a maximum amplitude and contributes to decay thereafter. The horizontal MSE advection is largely due to meridional advection of mean state MSE by the anomalous winds, suggesting that the MSE anomalies undergo a moisture–vortex instability (MVI)-like growth. In contrast, perturbation kinetic energy (PKE) is generated through barotropic conversion. The structure, propagation, and energetics of the regressed MLPSs are consistent with both barotropic and moisture–vortex growth.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Haochang Luo, hcluo@umich.edu
Save
  • Adames, Á. F., 2021: Interactions between water vapor, potential vorticity, and vertical wind shear in quasi-geostrophic motions: Implications for rotational tropical motion systems. J. Atmos. Sci., 78, 903923, https://doi.org/10.1175/JAS-D-20-0205.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., 2022: The basic equations under weak temperature gradient balance: Formulation, scaling, and types of convectively coupled motions. J. Atmos. Sci., 79, 20872108, https://doi.org/10.1175/JAS-D-21-0215.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and J. M. Wallace, 2014: Three-dimensional structure and evolution of the MJO and its relation to the mean flow. J. Atmos. Sci., 71, 20072026, https://doi.org/10.1175/JAS-D-13-0254.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and Y. Ming, 2018a: Interactions between water vapor and potential vorticity in synoptic-scale monsoonal disturbances: Moisture vortex instability. J. Atmos. Sci., 75, 20832106, https://doi.org/10.1175/JAS-D-17-0310.1.

    • Search Google Scholar
    • Export Citation
  • Adames, Á. F., and Y. Ming, 2018b: Moisture and moist static energy budgets of South Asian monsoon low pressure systems in GFDL AM4.0. J. Atmos. Sci., 75, 21072123, https://doi.org/10.1175/JAS-D-17-0309.1.

    • Search Google Scholar
    • Export Citation
  • Ajayamohan, R. S., W. J. Merryfield, and V. V. Kharin, 2010: Increasing trend of synoptic activity and its relationship with extreme rain events over central India. J. Climate, 23, 10041013, https://doi.org/10.1175/2009JCLI2918.1.

    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., Jr., and E. D. Maloney, 2014: The intraseasonal variability of African easterly wave energetics. J. Climate, 27, 65596580, https://doi.org/10.1175/JCLI-D-14-00146.1.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Aravéquia, J. A., V. B. Rao, and J. P. Bonatti, 1995: The role of moist baroclinic instability in the growth and structure of monsoon depressions. J. Atmos. Sci., 52, 43934409, https://doi.org/10.1175/1520-0469(1995)052%3C4393:TROMBI%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., J. V. Hurley, and V. S. Murthy, 2015: Adiabatic westward drift of Indian monsoon depressions. Quart. J. Roy. Meteor. Soc., 141, 10351048, https://doi.org/10.1002/qj.2454.

    • Search Google Scholar
    • Export Citation
  • Boos, W. R., B. E. Mapes, and V. S. Murthy, 2016: Potential vorticity structure and propagation mechanism of Indian monsoon depressions. The Global Monsoon System, World Scientific Series on Asia-Pacific Weather and Climate, Vol. 9, World Scientific, 187–199, https://doi.org/10.1142/9789813200913_0015.

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172, https://doi.org/10.1175/1520-0469(1962)019<0159:OTSOIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, B., W.-w. Tung, and M. Yanai, 2016: Multiscale temporal mean features of perturbation kinetic energy and its budget in the tropics: Review and computation. Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai, Meteor. Monogr., No. 56, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0017.1.

  • Chen, W. Y., 1982: Fluctuations in Northern Hemisphere 700 mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808823, https://doi.org/10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, S. K., Y. Ming, and Á. F. Adames, 2020: Monsoon low pressure system–like variability in an idealized moist model. J. Climate, 33, 20512074, https://doi.org/10.1175/JCLI-D-19-0289.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, N. Y., and W. R. Boos, 2016: Perspectives on moist baroclinic instability: Implications for the growth of monsoon depressions. J. Atmos. Sci., 73, 17671788, https://doi.org/10.1175/JAS-D-15-0254.1.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1978: Predictability of sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 8, 233246, https://doi.org/10.1175/1520-0485(1978)008<0233:POSLPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2019a: Barotropic growth of monsoon depressions. Quart. J. Roy. Meteor. Soc., 145, 824844, https://doi.org/10.1002/qj.3467.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2019b: Monsoon depression amplification by moist barotropic instability in a vertically sheared environment. Quart. J. Roy. Meteor. Soc., 145, 26662684, https://doi.org/10.1002/qj.3585.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2021a: Evolution of idealized vortices in monsoon-like shears: Application to monsoon depressions. J. Atmos. Sci., 78, 12071225, https://doi.org/10.1175/JAS-D-20-0286.1.

    • Search Google Scholar
    • Export Citation
  • Diaz, M., and W. R. Boos, 2021b: The influence of surface heat fluxes on the growth of idealized monsoon depressions. J. Atmos. Sci., 78, 20132027, https://doi.org/10.1175/JAS-D-20-0359.1.

    • Search Google Scholar
    • Export Citation
  • Ditchek, S. D., W. R. Boos, S. J. Camargo, and M. K. Tippett, 2016: A genesis index for monsoon disturbances. J. Climate, 29, 51895203, https://doi.org/10.1175/JCLI-D-15-0704.1.

    • Search Google Scholar
    • Export Citation
  • Dong, W., Y. Lin, J. S. Wright, Y. Xie, F. Xu, W. Xu, and Y. Wang, 2017: Indian monsoon low-pressure systems feed up-and-over moisture transport to the southwestern Tibetan Plateau. J. Geophys. Res. Atmos., 122, 12 14012 151, https://doi.org/10.1002/2017JD027296.

    • Search Google Scholar
    • Export Citation
  • Fujinami, H., H. Hirata, M. Kato, and K. Tsuboki, 2020: Mesoscale precipitation systems and their role in the rapid development of a monsoon depression over the Bay of Bengal. Quart. J. Roy. Meteor. Soc., 146, 267283, https://doi.org/10.1002/qj.3672.

    • Search Google Scholar
    • Export Citation
  • Godbole, R. V., 1977: The composite structure of the monsoon depression. Tellus, 29A, 2540, https://doi.org/10.3402/tellusa.v29i1.11327.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized method of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1979: A generalized method of resolving transient disturbances into standing and traveling waves by space-time spectral analysis. J. Atmos. Sci., 36, 10171029, https://doi.org/10.1175/1520-0469(1979)036<1017:AGMORT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2019: Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsletter, No. 159, ECMWF, Reading, United Kingdom, 17–24, https://doi.org/10.21957/vf291hehd7.

  • Hunt, K. M. R., and J. K. Fletcher, 2019: The relationship between Indian monsoon rainfall and low-pressure systems. Climate Dyn., 53, 18591871, https://doi.org/10.1007/s00382-019-04744-x.

    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, P. M. Inness, D. E. Parker, and R. C. Levine, 2016: On the structure and dynamics of Indian monsoon depressions. Mon. Wea. Rev., 144, 33913416, https://doi.org/10.1175/MWR-D-15-0138.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, K. M. R., A. G. Turner, and L. C. Shaffrey, 2018: Extreme daily rainfall in Pakistan and north India: Scale interactions, mechanisms, and precursors. Mon. Wea. Rev., 146, 10051022, https://doi.org/10.1175/MWR-D-17-0258.1.

    • Search Google Scholar
    • Export Citation
  • Inoue, K., Á. F. Adames, and K. Yasunaga, 2020: Vertical velocity profiles in convectively coupled equatorial waves and MJO: New diagnoses of vertical velocity profiles in the wavenumber–frequency domain. J. Atmos. Sci., 77, 21392162, https://doi.org/10.1175/JAS-D-19-0209.1.

    • Search Google Scholar
    • Export Citation
  • Kasture, S. V., R. N. Keshavamurty, and V. Satyan, 1993: A model study of the growth of summer monsoon disturbances. Curr. Sci., 64, 673679.

    • Search Google Scholar
    • Export Citation
  • Krishnakumar, V., R. N. Keshavamurty, and S. V. Kasture, 1992: Moist baroclinic instability and the growth of monsoon depressions—Linear and nonlinear studies. Proc. Indian Acad. Sci., Earth Planet. Sci., 101, 123152, https://doi.org/10.1007/BF02840349.

    • Search Google Scholar
    • Export Citation
  • Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite structure of monsoon low pressure systems and its relation to Indian rainfall. J. Climate, 23, 42854305, https://doi.org/10.1175/2010JCLI2953.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., 1979: Tropical Meteorology. World Meteorological Organization, 428 pp.

  • Krishnamurti, T. N., M. Kanamitsu, R. Godbole, C.-B. Chang, F. Carr, and J. H. Chow, 1975: Study of a monsoon depression (I). J. Meteor. Soc. Japan, 53, 227240, https://doi.org/10.2151/jmsj1965.53.4_227.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., M. Kanamitsu, R. Godbole, C.-B. Chang, F. Carr, and J. H. Chow, 1976: Study of a monsoon depression (II), dynamical structure. J. Meteor. Soc. Japan, 54, 208225, https://doi.org/10.2151/jmsj1965.54.4_208.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., A. Martin, R. Krishnamurti, A. Simon, A. Thomas, and V. Kumar, 2013: Impacts of enhanced CCN on the organization of convection and recent reduced counts of monsoon depressions. Climate Dyn., 41, 117134, https://doi.org/10.1007/s00382-012-1638-z.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., B. Farrell, and A. J. Rosenthal, 1983: Absolute barotropic instability and monsoon depressions. J. Atmos. Sci., 40, 11781184, https://doi.org/10.1175/1520-0469(1983)040<1178:ABIAMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and D. L. Hartmann, 2001: The Madden–Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 25452558, https://doi.org/10.1175/1520-0469(2001)058<2545:TMJOBD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60, 21532168, https://doi.org/10.1175/1520-0469(2003)060<2153:TIOATE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mayta, V., Á. F. Adames, and F. Ahmed, 2022: Westward-propagating moisture mode over the tropical Western Hemisphere. Geophys. Res. Lett., 49, e2022GL097799, https://doi.org/10.1029/2022GL097799.

    • Search Google Scholar
    • Export Citation
  • Moorthi, S., and A. Arakawa, 1985: Baroclinic instability with cumulus heating. J. Atmos. Sci., 42, 20072031, https://doi.org/10.1175/1520-0469(1985)042<2007:BIWCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., and K. Masuda, 1981: Observational study of a monsoon depression developed over the Bay of Bengal during summer MONEX. J. Meteor. Soc. Japan, 59, 672682, https://doi.org/10.2151/jmsj1965.59.5_672.

    • Search Google Scholar
    • Export Citation
  • Rao, K. V., and S. Rajamani, 1970: Diagnostic study of a monsoon depression by geostrophic baroclinic model. Mausam, 21, 187194, https://doi.org/10.54302/mausam.v21i2.5366.

    • Search Google Scholar
    • Export Citation
  • Saha, K., and C.-P. Chang, 1983: The baroclinic processes of monsoon depressions. Mon. Wea. Rev., 111, 15061514, https://doi.org/10.1175/1520-0493(1983)111<1506:TBPOMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, K., F. Sanders, and J. Shukla, 1981: Westward propagating predecessors of monsoon depressions. Mon. Wea. Rev., 109, 330343, https://doi.org/10.1175/1520-0493(1981)109<0330:WPPOMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sikka, D. R., 1977: Some aspects of the life history, structure and movement of monsoon depressions. Pure Appl. Geophys., 115, 15011529, https://doi.org/10.1007/BF00874421.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058<3650:TWTGAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thomas, T. M., G. Bala, and V. V. Srinivas, 2021: Characteristics of the monsoon low pressure systems in the Indian subcontinent and the associated extreme precipitation events. Climate Dyn., 56, 18591878, https://doi.org/10.1007/s00382-020-05562-2.

    • Search Google Scholar
    • Export Citation
  • Thomas, T. M., G. Bala, and S. V. Vemavarapu, 2022: CESM simulation of monsoon low pressure systems over India. Int. J. Climatol., 42, 59645984, https://doi.org/10.1002/joc.7571.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., G. N. Kiladis, and P. J. Webster, 2000: Large-scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57, 613640, https://doi.org/10.1175/1520-0469(2000)057<0613:LSDFAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wolding, B. O., E. D. Maloney, and M. Branson, 2016: Vertically resolved weak temperature gradient analysis of the Madden-Julian oscillation in SP-CESM. J. Adv. Model. Earth Syst., 8, 15861619, https://doi.org/10.1002/2016MS000724.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., S. Yokoi, K. Inoue, and B. E. Mapes, 2019: Space–time spectral analysis of the moist static energy budget equation. J. Climate, 32, 501529, https://doi.org/10.1175/JCLI-D-18-0334.1.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and T.-C. Chen, 2005: Water vapor budget of the Indian monsoon depression. Tellus, 57A, 770782, https://doi.org/10.3402/tellusa.v57i5.14737.

    • Search Google Scholar
    • Export Citation
  • Yoon, J.-H., and W.-R. Huang, 2012: Indian monsoon depression: Climatology and variability. Modern Climatology, IntechOpen, 45–72, https://doi.org/10.5772/37917.

All Time Past Year Past 30 Days
Abstract Views 387 387 39
Full Text Views 174 174 24
PDF Downloads 199 199 24