On the Impact of a Dry Intrusion Driving Cloud-Regime Transitions in a Midlatitude Cold-Air Outbreak

Florian Tornow aEarth Institute, Columbia University, Palisades, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Florian Tornow in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-3664-6933
,
Andrew S. Ackerman bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Andrew S. Ackerman in
Current site
Google Scholar
PubMed
Close
,
Ann M. Fridlind bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Ann M. Fridlind in
Current site
Google Scholar
PubMed
Close
,
George Tselioudis bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by George Tselioudis in
Current site
Google Scholar
PubMed
Close
,
Brian Cairns bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Brian Cairns in
Current site
Google Scholar
PubMed
Close
,
David Painemal cNASA Langley Research Center, Hampton, Virginia
dScience Systems and Applications, Inc., Hampton, Virginia

Search for other papers by David Painemal in
Current site
Google Scholar
PubMed
Close
, and
Gregory Elsaesser eDepartment of Applied Physics and Applied Mathematics, Columbia University, Palisades, New York
bNASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Gregory Elsaesser in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Marine cold-air outbreaks (CAOs) occur in the postfrontal sector of midlatitude storms, usually accompanied by dry intrusions (DIs) shaping the free-tropospheric (FT) air aloft. Substantial rain initiates overcast to broken regime transitions in marine boundary layer (MBL) cloud decks that form where cold air first meets relatively high sea surface temperatures. An exemplary CAO in the northwest Atlantic shows earlier transitions (corresponding to reduced extents of overcast clouds) closer to the low pressure center. We hypothesize that gradients in the meteorological pattern imposed by the prevailing DI induced a variability in substantial rain onset and thereby transition. We compile satellite observations, reanalysis fields, and Lagrangian large-eddy simulations (LES) translating along MBL trajectories to show that postfrontal trajectories closer to the low pressure center are more favorable to rain formation (and thereby cloud transitions) because of 1) weaker FT subsidence rates, 2) greater FT humidity, 3) stronger MBL winds, and 4) a colder MBL with reduced lower-tropospheric stability. LES confirms the observed variability in transitions, with substantial rain appearing earlier where there is swifter reduction of cloud condensation nucleus (CCN) concentration and increase of liquid water path (LWP). Prior to substantial rain, CCN budgets indicate dominant loss terms from FT entrainment and hydrometeor collisions. LWP-enhancing cloud thickness increases more rapidly for weaker large-scale subsidence that enables faster MBL deepening. Mere MBL warming and moistening cannot explain cloud thickness increases. The generality of such a DI-imposed cloud transition pattern merits further investigation with more cases that may additionally be convoluted by onshore aerosol gradients.

Significance Statement

Cold-air outbreaks (CAOs) lead to marine boundary layer (MBL) clouds that commonly undergo rain-initiated overcast to broken cloud regime transitions that can drastically impact reflected solar radiation. We aim to better understand what mechanisms control these transitions. For a CAO event in the northwest Atlantic that shows earlier transitions closer to the low pressure center, we find the transition timing to be largely governed by the coinciding dry intrusion that imposes an inhomogeneous large-scale meteorological pattern onto the overlying free troposphere and thereby affects MBL rain formation. Our findings update conceptual understanding of extratropical cyclones and motivate analyzing observations and conducting simulations for more postfrontal cases through a Lagrangian perspective as done here for one case, to assess the generality of our findings.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Florian Tornow, ft2544@columbia.edu

Abstract

Marine cold-air outbreaks (CAOs) occur in the postfrontal sector of midlatitude storms, usually accompanied by dry intrusions (DIs) shaping the free-tropospheric (FT) air aloft. Substantial rain initiates overcast to broken regime transitions in marine boundary layer (MBL) cloud decks that form where cold air first meets relatively high sea surface temperatures. An exemplary CAO in the northwest Atlantic shows earlier transitions (corresponding to reduced extents of overcast clouds) closer to the low pressure center. We hypothesize that gradients in the meteorological pattern imposed by the prevailing DI induced a variability in substantial rain onset and thereby transition. We compile satellite observations, reanalysis fields, and Lagrangian large-eddy simulations (LES) translating along MBL trajectories to show that postfrontal trajectories closer to the low pressure center are more favorable to rain formation (and thereby cloud transitions) because of 1) weaker FT subsidence rates, 2) greater FT humidity, 3) stronger MBL winds, and 4) a colder MBL with reduced lower-tropospheric stability. LES confirms the observed variability in transitions, with substantial rain appearing earlier where there is swifter reduction of cloud condensation nucleus (CCN) concentration and increase of liquid water path (LWP). Prior to substantial rain, CCN budgets indicate dominant loss terms from FT entrainment and hydrometeor collisions. LWP-enhancing cloud thickness increases more rapidly for weaker large-scale subsidence that enables faster MBL deepening. Mere MBL warming and moistening cannot explain cloud thickness increases. The generality of such a DI-imposed cloud transition pattern merits further investigation with more cases that may additionally be convoluted by onshore aerosol gradients.

Significance Statement

Cold-air outbreaks (CAOs) lead to marine boundary layer (MBL) clouds that commonly undergo rain-initiated overcast to broken cloud regime transitions that can drastically impact reflected solar radiation. We aim to better understand what mechanisms control these transitions. For a CAO event in the northwest Atlantic that shows earlier transitions closer to the low pressure center, we find the transition timing to be largely governed by the coinciding dry intrusion that imposes an inhomogeneous large-scale meteorological pattern onto the overlying free troposphere and thereby affects MBL rain formation. Our findings update conceptual understanding of extratropical cyclones and motivate analyzing observations and conducting simulations for more postfrontal cases through a Lagrangian perspective as done here for one case, to assess the generality of our findings.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Florian Tornow, ft2544@columbia.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.0536 MB)
Save
  • Abel, S. J., and Coauthors, 2017: The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak. J. Atmos. Sci., 74, 22932314, https://doi.org/10.1175/JAS-D-16-0362.1.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B. W., and W. J. Zhang, 1996: Mesoscale shallow convection in the atmosphere. Rev. Geophys., 34, 403431, https://doi.org/10.1029/96RG02623.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., P. G. Hill, K. Furtado, K. D. Williams, P. R. Field, J. C. Manners, P. Hyder, and S. Kato, 2016: Large contribution of supercooled liquid clouds to the solar radiation budget of the Southern Ocean. J. Climate, 29, 42134228, https://doi.org/10.1175/JCLI-D-15-0564.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and C. R. Jones, 2013: Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases. J. Adv. Model. Earth Syst., 5, 316337, https://doi.org/10.1002/jame.20019.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1997: The dry intrusion perspective of extra-tropical cyclone development. Meteor. Appl., 4, 317324, https://doi.org/10.1017/S1350482797000613.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Reynolds, 1994: Diagnostic study of a narrow cold-frontal rainband and severe winds associated with a stratospheric intrusion. Quart. J. Roy. Meteor. Soc., 120, 235257, https://doi.org/10.1002/qj.49712051602.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1997: Boundary layer mass, water, and heat budgets in wintertime cold-air outbreaks from the Arctic sea ice. Mon. Wea. Rev., 125, 18241837, https://doi.org/10.1175/1520-0493(1997)125<1824:BLMWAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brümmer, B., 1999: Roll and cell convection in wintertime Arctic cold-air outbreaks. J. Atmos. Sci., 56, 26132636, https://doi.org/10.1175/1520-0469(1999)056<2613:RACCIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., and S. Raveh-Rubin, 2019: Climatology and dynamics of the link between dry intrusions and cold fronts during winter. Part I: Global climatology. Climate Dyn., 53, 18731892, https://doi.org/10.1007/s00382-019-04745-w.

    • Search Google Scholar
    • Export Citation
  • Chun, J.-Y., R. Wood, P. Blossey, and S. J. Doherty, 2023: Microphysical, macrophysical, and radiative responses of subtropical marine clouds to aerosol injections. Atmos. Chem. Phys., 23, 13451368, https://doi.org/10.5194/acp-23-1345-2023.

    • Search Google Scholar
    • Export Citation
  • Comstock, K. K., R. Wood, S. E. Yuter, and C. S. Bretherton, 2004: Reflectivity and rain rate in and below drizzling stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 28912918, https://doi.org/10.1256/qj.03.187.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., I. L. McCoy, and R. Wood, 2021: Environmental and internal controls on Lagrangian transitions from closed cell mesoscale cellular convection over subtropical oceans. J. Atmos. Sci., 78, 23672383, https://doi.org/10.1175/JAS-D-20-0277.1.

    • Search Google Scholar
    • Export Citation
  • Eastman, R., I. L. McCoy, and R. Wood, 2022: Wind, rain, and the closed to open cell transition in subtropical marine stratocumulus. J. Geophys. Res. Atmos., 127, e2022JD036795, https://doi.org/10.1029/2022JD036795.

    • Search Google Scholar
    • Export Citation
  • Eirund, G. K., U. Lohmann, and A. Possner, 2019: Cloud ice processes enhance spatial scales of organization in Arctic stratocumulus. Geophys. Res. Lett., 46, 14 10914 117, https://doi.org/10.1029/2019GL084959.

    • Search Google Scholar
    • Export Citation
  • Elsaesser, G. S., C. W. O’Dell, M. D. Lebsock, R. Bennartz, T. J. Greenwald, and F. J. Wentz, 2017: The Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). J. Climate, 30, 10 19310 210, https://doi.org/10.1175/JCLI-D-16-0902.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143, 25372555, https://doi.org/10.1002/qj.3105.

    • Search Google Scholar
    • Export Citation
  • Fletcher, J., S. Mason, and C. Jakob, 2016: The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Climate, 29, 19992014, https://doi.org/10.1175/JCLI-D-15-0268.1.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Hilburn, K. A., and F. J. Wentz, 2008: Intercalibrated passive microwave rain products from the Unified Microwave Ocean Retrieval Algorithm (UMORA). J. Appl. Meteor. Climatol., 47, 778794, https://doi.org/10.1175/2007JAMC1635.1.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, F., F. Glassmeier, T. Yamaguchi, and G. Feingold, 2020: Liquid water path steady states in stratocumulus: Insights from process-level emulation and mixed-layer theory. J. Atmos. Sci., 77, 22032215, https://doi.org/10.1175/JAS-D-19-0241.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2020: Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, Springer International, 343–353, https://doi.org/10.1007/978-3-030-24568-9_19.

  • Ilotoviz, E., V. P. Ghate, and S. Raveh-Rubin, 2021: The impact of slantwise descending dry intrusions on the marine boundary layer and air-sea interface over the ARM eastern North Atlantic site. J. Geophys. Res. Atmos., 126, e2020JD033879, https://doi.org/10.1029/2020JD033879.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606, https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., D. L. Hartmann, and J. R. Norris, 1995: On the relationships among low-cloud structure, sea surface temperature, and atmospheric circulation in the summertime northeast Pacific. J. Climate, 8, 11401155, https://doi.org/10.1175/1520-0442(1995)008<1140:OTRALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCoy, D. T., D. L. Hartmann, and D. P. Grosvenor, 2014: Observed Southern Ocean cloud properties and shortwave reflection. Part I: Calculation of SW flux from observed cloud properties. J. Climate, 27, 88368857, https://doi.org/10.1175/JCLI-D-14-00287.1.

    • Search Google Scholar
    • Export Citation
  • McCoy, I. L., R. Wood, and J. K. Fletcher, 2017: Identifying meteorological controls on open and closed mesoscale cellular convection associated with marine cold air outbreaks. J. Geophys. Res. Atmos., 122, 11 67811 702, https://doi.org/10.1002/2017JD027031.

    • Search Google Scholar
    • Export Citation
  • McCoy, I. L., C. S. Bretherton, R. Wood, C. H. Twohy, A. Gettelman, C. G. Bardeen, and D. W. Toohey, 2021: Influences of recent particle formation on Southern Ocean aerosol variability and low cloud properties. J. Geophys. Res. Atmos., 126, e2020JD033529, https://doi.org/10.1029/2020JD033529.

    • Search Google Scholar
    • Export Citation
  • McCoy, I. L., D. T. McCoy, R. Wood, P. Zuidema, and F. A.-M. Bender, 2023: The role of mesoscale cloud morphology in the shortwave cloud feedback. Geophys. Res. Lett., 50, e2022GL101042, https://doi.org/10.1029/2022GL101042.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2015: NOAA Climate Data Record (CDR) of cloud and clear-sky radiation properties, version 1.0. Accessed 17 August 2023, https://doi.org/10.789/V5HT2M8T.

  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Müller, G., B. Brümmer, and W. Alpers, 1999: Roll convection within an Arctic cold-air outbreak: Interpretation of in situ aircraft measurements and spaceborne SAR imagery by a three-dimensional atmospheric model. Mon. Wea. Rev., 127, 363380, https://doi.org/10.1175/1520-0493(1999)127<0363:RCWAAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Myers, T. A., and J. R. Norris, 2013: Observational evidence that enhanced subsidence reduces subtropical marine boundary layer cloudiness. J. Climate, 26, 75077524, https://doi.org/10.1175/JCLI-D-12-00736.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, and A. D. D. Genio, 2016: The relationship between boundary layer stability and cloud cover in the post-cold-frontal region. J. Climate, 29, 81298149, https://doi.org/10.1175/JCLI-D-15-0700.1.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, K. Lamer, R. Marchand, A. Protat, and G. M. McFarquhar, 2020: On the relationship between the marine cold air outbreak M parameter and low-level cloud heights in the midlatitudes. J. Geophys. Res. Atmos., 125, e2020JD032465, https://doi.org/10.1029/2020JD032465.

    • Search Google Scholar
    • Export Citation
  • Norris, J. R., and C. B. Leovy, 1994: Interannual variability in stratiform cloudiness and sea surface temperature. J. Climate, 7, 19151925, https://doi.org/10.1175/1520-0442(1994)007<1915:IVISCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ovchinnikov, M., and Coauthors, 2014: Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions. J. Adv. Model. Earth Syst., 6, 223248, https://doi.org/10.1002/2013MS000282.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, https://doi.org/10.1175/JCLI-D-14-00482.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., S. A. Ackerman, M. D. King, K. Meyer, W. P. Menzel, R. E. Holz, B. A. Baum, and P. Yang, 2015a: MODIS atmosphere l2 cloud product (06_l2), NASA MODIS Adaptive Processing System. Goddard Space Flight Center, accessed 17 August 2023, https://doi.org/10.5067/MODIS/MYD06_L2.006.

  • Platnick, S., S. A. Ackerman, M. D. King, K. Meyer, W. P. Menzel, R. E. Holz, B. A. Baum, and P. Yang, 2015b: MODIS atmosphere l2 cloud product (06_l2), NASA MODIS Adaptive Processing System. Goddard Space Flight Center, accessed 17 August 2023, https://doi.org/10.5067/MODIS/MOD06_L2.006.

  • Raveh-Rubin, S., 2017: Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer. J. Climate, 30, 66616682, https://doi.org/10.1175/JCLI-D-16-0782.1.

    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., and J. L. Catto, 2019: Climatology and dynamics of the link between dry intrusions and cold fronts during winter, Part II: Front-centred perspective. Climate Dyn., 53, 18931909, https://doi.org/10.1007/s00382-019-04793-2.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I. A., and G. W. K. Moore, 1999: An extreme cold-air outbreak over the Labrador Sea: Roll vortices and air–sea interaction. Mon. Wea. Rev., 127, 23792394, https://doi.org/10.1175/1520-0493(1999)127<2379:AECAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., B. Stevens, and R. Pincus, 2010: On the transitions in marine boundary layer cloudiness. Atmos. Chem. Phys., 10, 23772391, https://doi.org/10.5194/acp-10-2377-2010.

    • Search Google Scholar
    • Export Citation
  • Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed sensitivity of low-cloud radiative effects to meteorological perturbations over the global oceans. J. Climate, 33, 77177734, https://doi.org/10.1175/JCLI-D-19-1028.1.

    • Search Google Scholar
    • Export Citation
  • Seethala, C., and Coauthors, 2021: On assessing ERA5 and MERRA2 representations of cold-air outbreaks across the Gulf Stream. Geophys. Res. Lett., 48, e2021GL094364, https://doi.org/10.1029/2021GL094364.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., and Coauthors, 2019: Aerosol–cloud–meteorology interaction airborne field investigations: Using lessons learned from the U.S. West Coast in the design of activate off the U.S. East Coast. Bull. Amer. Meteor. Soc., 100, 15111528, https://doi.org/10.1175/BAMS-D-18-0100.1.

    • Search Google Scholar
    • Export Citation
  • Stengel, M., and Coauthors, 2020: Cloud_cci Advanced Very High Resolution Radiometer Post Meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties. Earth Syst. Sci. Data, 12, 4160, https://doi.org/10.5194/essd-12-41-2020.

    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., B. J. Hoskins, and M. E. McIntyre, 1993: Two paradigms of baroclinic-wave life-cycle behaviour. Quart. J. Roy. Meteor. Soc., 119, 1755, https://doi.org/10.1002/qj.49711950903.

    • Search Google Scholar
    • Export Citation
  • Tornow, F., A. S. Ackerman, and A. M. Fridlind, 2021: Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmos. Chem. Phys., 21, 12 04912 067, https://doi.org/10.5194/acp-21-12049-2021.

    • Search Google Scholar
    • Export Citation
  • Tornow, F., and Coauthors, 2022: Dilution of boundary layer cloud condensation nucleus concentrations by free tropospheric entrainment during marine cold air outbreaks. Geophys. Res. Lett., 49, e2022GL098444, https://doi.org/10.1029/2022GL098444.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and K. Grise, 2020: Midlatitude cloud systems. Clouds and Climate: Climate Science’s Greatest Challenge, A. Siebesma et al., Eds., Cambridge University Press, 279–296.

  • Tselioudis, G., W. B. Rossow, C. Jakob, J. Remillard, D. Tropf, and Y. Zhang, 2021: Evaluation of clouds, radiation, and precipitation in CMIP6 models using global weather states derived from ISCCP-H cloud property data. J. Climate, 34, 73117324, https://doi.org/10.1175/JCLI-D-21-0076.1.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256, https://doi.org/10.1016/0004-6981(74)90004-3.

  • van der Dussen, J. J., S. R. de Roode, and A. P. Siebesma, 2014: Factors controlling rapid stratocumulus cloud thinning. J. Atmos. Sci., 71, 655664, https://doi.org/10.1175/JAS-D-13-0114.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., B. Geerts, and Y. Chen, 2016: Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska. J. Geophys. Res. Atmos., 121, 399412, https://doi.org/10.1002/2015JD023506.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669, https://doi.org/10.1175/JAS3942.1.

    • Search Google Scholar
    • Export Citation
  • Woodruff, S. D., R. J. Slutz, R. L. Jenne, and P. M. Steurer, 1987: A Comprehensive Ocean-Atmosphere Data Set. Bull. Amer. Meteor. Soc., 68, 12391250, https://doi.org/10.1175/1520-0477(1987)068<1239:ACOADS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, H. A. Rand, and D. E. Stevens, 1997: Numerical simulations and a conceptual model of the stratocumulus to trade cumulus transition. J. Atmos. Sci., 54, 168192, https://doi.org/10.1175/1520-0469(1997)054<0168:NSAACM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yamaguchi, T., G. Feingold, and J. Kazil, 2017: Stratocumulus to cumulus transition by drizzle. J. Adv. Model. Earth Syst., 9, 23332349, https://doi.org/10.1002/2017MS001104.

    • Search Google Scholar
    • Export Citation
  • Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor, 2020: Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett., 47, e2019GL085782, https://doi.org/10.1029/2019GL085782.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., M. Zhao, and R. E. Dickinson, 1998: Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 26282644, https://doi.org/10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 671 670 157
Full Text Views 312 312 10
PDF Downloads 385 385 13