• Bacon, N., M. Baker, and B. Swanson, 2003: Initial stages in the morphological evolution of vapour-grown ice crystals: A laboratory investigation. Quart. J. Roy. Meteor. Soc., 129, 19031927, https://doi.org/10.1256/qj.02.04.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2004: Growth rates and habits of ice crystals between −20° and −70°C. J. Atmos. Sci., 61, 514544, https://doi.org/10.1175/1520-0469(2004)061<0514:GRAHOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bailey, M., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, https://doi.org/10.1175/JAM2398.1.

    • Search Google Scholar
    • Export Citation
  • Brandes, E., K. Ikeda, G. Zhang, M. Schönhuber, and R. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, https://doi.org/10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Brown, P., and P. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061221, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and T.-C. Tsai, 2016: Triple-moment modal parameterization for the adaptive growth habit of pristine ice crystals. J. Atmos. Sci., 73, 21052122, https://doi.org/10.1175/JAS-D-15-0220.1.

    • Search Google Scholar
    • Export Citation
  • Chiruta, M., and P. Wang, 2003: The capacitance of rosette ice crystals. J. Atmos. Sci., 60, 836846, https://doi.org/10.1175/1520-0469(2003)060<0836:TCORIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, R., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, https://doi.org/10.1002/qj.2058.

    • Search Google Scholar
    • Export Citation
  • Davis, E., 2010: A button electrode levitation chamber for the study of ice crystal growth under atmospheric conditions. M.S. thesis, Dept. of Meteorology, The Pennsylvania State University, 77 pp.

  • Dunnavan, E. L., and Z. Jiang, 2019: A general method for estimating bulk 2D projections of ice particle shape: Theory and applications. J. Atmos. Sci., 76, 305332, https://doi.org/10.1175/JAS-D-18-0177.1.

    • Search Google Scholar
    • Export Citation
  • Dunnavan, E. L., Z. Jiang, J. Y. Harrington, J. Verlinde, K. Fitch, and T. J. Garrett, 2019: The shape and density evolution of snow aggregates. J. Atmos. Sci., 76, 39193940, https://doi.org/10.1175/JAS-D-19-0066.1.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. J., 1971: Dimensions of thermal diffusion chambers. J. Atmos. Sci., 28, 810811, https://doi.org/10.1175/1520-0469(1971)028<0810:DOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Erfani, E., and D. L. Mitchell, 2016: Developing and bounding ice particle mass- and area-dimension expressions for use in atmospheric models and remote sensing. Atmos. Chem. Phys., 16, 43794400, https://doi.org/10.5194/acp-16-4379-2016.

    • Search Google Scholar
    • Export Citation
  • Frank, F. C., 1982: Snow crystals. Contemp. Phys., 23, 322, https://doi.org/10.1080/00107518208231565.

  • Fridlind, A. M., R. Atlas, D. Bastiaan, J. Um, G. M. McFarquhar, A. S. Ackerman, E. J. Moyer, and R. P. Lawson, 2016: Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model. Atmos. Chem. Phys., 16, 72517283, https://doi.org/10.5194/acp-16-7251-2016.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., 1969: Experimental studies on the growth of small ice crystals. J. Atmos. Sci., 26, 522531, https://doi.org/10.1175/1520-0469(1969)026<0522:ESOTGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fukuta, N., and T. Takahashi, 1999: The growth of atmospheric ice crystals: A summary of findings in vertical supercooled cloud tunnel studies. J. Atmos. Sci., 56, 19631979, https://doi.org/10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., S. E. Yuter, C. Fallgatter, K. Shukurko, S. R. Rhodes, and J. L. Endries, 2015: Orientations and aspect ratios of falling snow. Geophys. Res. Lett., 42, 46174622, https://doi.org/10.1002/2015GL064040.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., and G. Pokrifka, 2021: Approximate models for lateral growth on ice crystal surfaces during vapor depositional growth. J. Atmos. Sci., 78, 967981, https://doi.org/10.1175/JAS-D-20-0228.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., A. Moyle, L. E. Hanson, and H. Morrison, 2019: On calculating deposition coefficients and aspect-ratio evolution in approximate models of ice crystal vapor growth. J. Atmos. Sci., 76, 16091625, https://doi.org/10.1175/JAS-D-18-0319.1.

    • Search Google Scholar
    • Export Citation
  • Harrison, A., A. Moyle, M. Hanson, and J. Harrington, 2016: Levitation diffusion chamber measurements of the mass growth of small ice crystals from vapor. J. Atmos. Sci., 73, 27432758, https://doi.org/10.1175/JAS-D-15-0234.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2007: The Spectral Ice Habit Prediction System (SHIPS). Part I: Model description and simulation of the vapor deposition process. J. Atmos. Sci., 64, 22102237, https://doi.org/10.1175/JAS3963.1.

    • Search Google Scholar
    • Export Citation
  • Hashino, T., and G. J. Tripoli, 2008: The Spectral Ice Habit Prediction System (SHIPS) Part II: Simulation of nucleation and depositional growth of polycrystals. J. Atmos. Sci., 65, 30713094, https://doi.org/10.1175/2008JAS2615.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., and J. Iaquinta, 2000: Cirrus crystal terminal fall velocities. J. Atmos. Sci., 57, 916938, https://doi.org/10.1175/1520-0469(2000)057<0916:CCTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., S. Lewis, A. Bansemer, J. Iaquinta, L. Miloshevich, M. Kajikawa, C. Twohy, and M. Poellot, 2002: A general approach for deriving the properties of cirrus and stratiform ice cloud particles. J. Atmos. Sci., 59, 329, https://doi.org/10.1175/1520-0469(2002)059<0003:AGAFDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., A. Bansemer, C. Schmitt, C. Twohy, and M. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., A. Bansemer, and C. H. Twohy, 2007: Refinements to ice particle mass dimensional and terminal velocity relationships for ice clouds. Part I: Temperature dependence. J. Atmos. Sci., 64, 10471067, https://doi.org/10.1175/JAS3890.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., C. Schmitt, and A. Bansemer, 2010: Improved representation of ice-particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, https://doi.org/10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A., J. Harrington, H. Morrison, and J. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and Coauthors, 2019: A review of ice particle shapes in cirrus formed in situ and in anvils. J. Geophys. Res. Atmos., 124, 10 04910 090, https://doi.org/10.1029/2018JD030122.

    • Search Google Scholar
    • Export Citation
  • Leinonen, J., J. Grazioli, and A. Berne, 2021: Reconstruction of the mass and geometry of snowfall particles from Multi-Angle Snowflake Camera (MASC) images. Atmos. Meas. Tech., 14, 68516866, https://doi.org/10.5194/amt-14-6851-2021.

    • Search Google Scholar
    • Export Citation
  • Magee, N., and Coauthors, 2021: Captured cirrus ice particles in high definition. Atmos. Chem. Phys., 21, 71717185, https://doi.org/10.5194/acp-21-7171-2021.

    • Search Google Scholar
    • Export Citation
  • Matsuo, T., and N. Fukuta, 1987: Experimental study of ice crystal growth below water saturation in the University of Utah supercooled cloud tunnel. Pap. Meteor. Geophys., 38, 247264, https://doi.org/10.2467/mripapers.38.247.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of ice microphysics based on the prediction of bulk particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Muramoto, K., K. Matsuura, and T. Shiina, 1995: Measuring the density of snow particles and snowfall rate. Electron. Commun. Japan, 78, 7179, https://doi.org/10.1002/ecjc.4430781107.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., 1994: A theoretical study of ice crystal growth in the atmosphere. Ph.D. thesis, University of Washington, 183 pp.

  • Nelson, J., 2001: Growth mechanisms to explain the primary and secondary habits of snow crystals. Philos. Mag., 81A, 23372373, https://doi.org/10.1080/01418610108217152.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and M. Baker, 1996: New theoretical framework for studies of vapor growth and sublimation of small ice crystals in the atmosphere. J. Geophys. Res., 101, 70337047, https://doi.org/10.1029/95JD03162.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and C. Knight, 1998: Snow crystal habit changes explained by layer nucleation. J. Atmos. Sci., 55, 14521465, https://doi.org/10.1175/1520-0469(1998)055<1452:SCHCEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nelson, J., and B. Swanson, 2019: Air pockets and secondary habits in ice from lateral-type growth. Atmos. Chem. Phys., 19, 15 28515 320, https://doi.org/10.5194/acp-19-15285-2019.

    • Search Google Scholar
    • Export Citation
  • Parungo, F., and H. Weickmann, 1973: Growth of ice crystals from frozen droplets. Meteor. Atmos. Phys., 46, 289304.

  • Pokrifka, G. F., A. M. Moyle, L. E. Hanson, and J. Y. Harrington, 2020: Estimating surface attachment kinetic and growth transition influences on vapor-grown ice crystals. J. Atmos. Sci., 77, 23932410, https://doi.org/10.1175/JAS-D-19-0303.1.

    • Search Google Scholar
    • Export Citation
  • Rees, K. N., D. K. Singh, E. R. Pardyjak, and T. J. Garrett, 2021: Mass and density of individual frozen hydrometeors. Atmos. Chem. Phys., 21, 14 23514 250, https://doi.org/10.5194/acp-21-14235-2021.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. J. Atmos. Sci., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., E. R. Wishart, and E. W. Holroyd, 1974: The densities and growth rates of ice crystals between −5C and −9C. J. Atmos. Sci., 31, 21362141, https://doi.org/10.1175/1520-0469(1974)031<2136:TDAGRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., E. R. Wishart, and D. Shaw, 1976: The growth rates and densities of ice crystals between −3°C and −21°C. J. Atmos. Sci., 33, 842850, https://doi.org/10.1175/1520-0469(1976)033<0842:TGRADO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. van Lier-Walqui, M. R. Kumjian, J. Y. Harrington, A. A. Jensen, and Y.-S. Chen, 2021: Radar-based Bayesian estimation of ice crystal growth parameters within a microphysical model. J. Atmos. Sci., 78, 549569, https://doi.org/10.1175/JAS-D-20-0134.1.

    • Search Google Scholar
    • Export Citation
  • Skrotzki, J., and Coauthors, 2013: The accommodation coefficient of water molecules on ice—Cirrus cloud studies at the AIDA simulation chamber. Atmos. Chem. Phys., 13, 44514466, https://doi.org/10.5194/acp-13-4451-2013.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and N. Fukuta, 1988: Supercooled cloud tunnel studies on the growth of snow crystals between −4 and −20°C. J. Meteor. Soc. Japan, 66, 841855, https://doi.org/10.2151/jmsj1965.66.6_841.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., T. Endoh, G. Wakahama, and N. Fukuta, 1991: Vapor diffusional growth of free-falling snow crystals between −3 and −23°C. J. Meteor. Soc. Japan, 69, 1530, https://doi.org/10.2151/jmsj1965.69.1_15.

    • Search Google Scholar
    • Export Citation
  • Um, J., and G. M. McFarquhar, 2011: Dependence of the single-scattering properties of small ice crystals on idealized shape models. Atmos. Chem. Phys., 11, 31593171, https://doi.org/10.5194/acp-11-3159-2011.

    • Search Google Scholar
    • Export Citation
  • Weitzel, M., S. K. Mitra, M. Szakáll, J. P. Fugal, and S. Borrmann, 2020: Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals. Atmos. Chem. Phys., 20, 14 88914 901, https://doi.org/10.5194/acp-20-14889-2020.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. J. Hogan, and A. J. Illingworth, 2008: The capacitance of pristine ice crystals and aggregate snowflakes. J. Atmos. Sci., 65, 206219, https://doi.org/10.1175/2007JAS2315.1.

    • Search Google Scholar
    • Export Citation
  • Wood, S., M. Baker, and D. Calhoun, 2001: New model for the vapor growth of hexagonal ice crystals in the atmosphere. J. Geophys. Res., 106, 48454870, https://doi.org/10.1029/2000JD900338.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and J. Harrington, 2014: Including surface kinetic effects in simple models of ice vapor diffusion. J. Atmos. Sci., 71, 372390, https://doi.org/10.1175/JAS-D-13-0103.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 171 171 50
Full Text Views 60 60 22
PDF Downloads 81 81 29

Effective Density Derived from Laboratory Measurements of the Vapor Growth Rates of Small Ice Crystals at −65° to −40°C

Gwenore F. PokrifkaaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Gwenore F. Pokrifka in
Current site
Google Scholar
PubMed
Close
,
Alfred M. MoyleaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Alfred M. Moyle in
Current site
Google Scholar
PubMed
Close
, and
Jerry Y. HarringtonaDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jerry Y. Harrington in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An electrodynamic levitation thermal-gradient diffusion chamber was used to grow 268 individual, small ice particles (initial radii of 8–26 μm) from the vapor, at temperatures ranging from −65° to −40°C, and supersaturations up to liquid saturation. Growth limited by attachment kinetics was frequently measured at low supersaturation, as shown in prior work. At high supersaturation, enhanced growth was measured, likely due to the development of branches and hollowed facets. The effects of branching and hollowing on particle growth are often treated with an effective density ρ eff. We fit the measured time series with two different models to estimate size-dependent ρ eff values: the first model decreases ρ eff to an asymptotic deposition density ρ dep, and the second models ρ eff by a power law with exponent P. Both methods produce similar results, though the fits with ρ dep typically have lower relative errors. The fit results do not correspond well with models of isometric or planar single-crystalline growth. While single-crystalline columnar crystals correspond to some of the highest growth rates, a newly constructed geometric model of budding rosette crystals produces the best match with the growth data. The relative frequency of occurrence of ρ dep and P values show a clear dependence on ice supersaturation normalized to liquid saturation. We use these relative frequencies of ρ dep and P to derive two supersaturation-dependent mass–size relationships suitable for cloud modeling applications.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gwenore F. Pokrifka, gfp5025@psu.edu

Abstract

An electrodynamic levitation thermal-gradient diffusion chamber was used to grow 268 individual, small ice particles (initial radii of 8–26 μm) from the vapor, at temperatures ranging from −65° to −40°C, and supersaturations up to liquid saturation. Growth limited by attachment kinetics was frequently measured at low supersaturation, as shown in prior work. At high supersaturation, enhanced growth was measured, likely due to the development of branches and hollowed facets. The effects of branching and hollowing on particle growth are often treated with an effective density ρ eff. We fit the measured time series with two different models to estimate size-dependent ρ eff values: the first model decreases ρ eff to an asymptotic deposition density ρ dep, and the second models ρ eff by a power law with exponent P. Both methods produce similar results, though the fits with ρ dep typically have lower relative errors. The fit results do not correspond well with models of isometric or planar single-crystalline growth. While single-crystalline columnar crystals correspond to some of the highest growth rates, a newly constructed geometric model of budding rosette crystals produces the best match with the growth data. The relative frequency of occurrence of ρ dep and P values show a clear dependence on ice supersaturation normalized to liquid saturation. We use these relative frequencies of ρ dep and P to derive two supersaturation-dependent mass–size relationships suitable for cloud modeling applications.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Gwenore F. Pokrifka, gfp5025@psu.edu
Save