• Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, T., C. S. Bretherton, C. Hohenegger, and B. Stevens, 2018: Estimating bulk entrainment with unaggregated and aggregated convection. Geophys. Res. Lett., 45, 455462, https://doi.org/10.1002/2017GL076640.

    • Search Google Scholar
    • Export Citation
  • Brast, M., R. A. Neggers, and T. Heus, 2016: What determines the fate of rising parcels in a heterogeneous environment? J. Adv. Model. Earth Syst., 8, 16741690, https://doi.org/10.1002/2016MS000750.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., J. R. McCaa, and H. Grenier, 2004: A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results. Mon. Wea. Rev., 132, 864882, https://doi.org/10.1175/1520-0493(2004)132%3C0864:ANPFSC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 587604, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., S. Hagos, H. Xiao, J. D. Fast, and Z. Feng, 2020: Characterization of surface heterogeneity-induced convection using cluster analysis. J. Geophys. Res. Atmos., 125, e2020JD032550, https://doi.org/10.1029/2020JD032550.

    • Search Google Scholar
    • Export Citation
  • Dagan, G., I. Koren, A. Kostinski, and O. Altaratz, 2018: Organization and oscillations in simulated shallow convective clouds. J. Adv. Model. Earth Syst., 10, 22872299, https://doi.org/10.1029/2018MS001416.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and G. Vali, 2007: Evidence for tilted toroidal circulations in cumulus. J. Atmos. Sci., 64, 20452060, https://doi.org/10.1175/JAS3941.1.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2011: The influence of the cloud shell on tracer budget measurements of LES cloud entrainment. J. Atmos. Sci., 68, 29092920, https://doi.org/10.1175/2011JAS3658.1.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2012: Statistical analysis of an LES shallow cumulus cloud ensemble using a cloud tracking algorithm. Atmos. Chem. Phys., 12, 11011119, https://doi.org/10.5194/acp-12-1101-2012.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139, 119, https://doi.org/10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., T. A. O’Brien, D. Rieger, B. Vogel, and W. F. Cooke, 2016: Are atmospheric updrafts a key to unlocking climate forcing and sensitivity? Atmos. Chem. Phys., 16, 12 98312 992, https://doi.org/10.5194/acp-16-12983-2016.

    • Search Google Scholar
    • Export Citation
  • Eissner, J. M., D. B. Mechem, M. P. Jensen, S. E. Giangrande, and J. Eissner, 2021: Factors governing cloud growth and entrainment rates in shallow cumulus and cumulus congestus during GoAmazon2014/5. J. Geophys. Res. Atmos., 126, e2021JD034722, https://doi.org/10.1029/2021JD034722.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., L. K. Berg, Z. Feng, F. Mei, R. Newsom, K. Sakaguchi, and H. Xiao, 2019a: The impact of variable land-atmosphere coupling on convective cloud populations observed during the 2016 HI-SCALE field campaign. J. Adv. Model. Earth Syst., 11, 26292654, https://doi.org/10.1029/2019MS001727.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and Coauthors, 2019b: Overview of the HI-SCALE field campaign: A new perspective on shallow convective clouds. Bull. Amer. Meteor. Soc., 100, 821840, https://doi.org/10.1175/BAMS-D-18-0030.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., X. Dong, B. Xi, S. A. McFarlane, A. Kennedy, B. Lin, and P. Minnis, 2012: Life cycle of midlatitude deep convective systems in a Lagrangian framework. J. Geophys. Res., 117, D23201, https://doi.org/10.1029/2012JD018362.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., L. R. Leung, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han, and J. Fan, 2018: Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst., 10, 14701494, https://doi.org/10.1029/2018MS001305.

    • Search Google Scholar
    • Export Citation
  • Fletcher, J. K., and C. S. Bretherton, 2010: Evaluating boundary layer-based mass flux closures using cloud-resolving model simulations of deep convection. J. Atmos. Sci., 67, 22122225, https://doi.org/10.1175/2010JAS3328.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., 2001: Estimation of entrainment rate in simple models of convective clouds. Quart. J. Roy. Meteor. Soc., 127, 5372, https://doi.org/10.1002/qj.49712757104.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagos, S., Z. Feng, R. S. Plant, R. A. Houze Jr., and H. Xiao, 2018: A stochastic framework for modeling the population dynamics of convective clouds. J. Adv. Model. Earth Syst., 10, 448465, https://doi.org/10.1002/2017MS001214.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., 2017: Entrainment versus dilution in tropical deep convection. J. Atmos. Sci., 74, 37253747, https://doi.org/10.1175/JAS-D-16-0169.1.

    • Search Google Scholar
    • Export Citation
  • Heus, T., and A. Seifert, 2013: Automated tracking of shallow cumulus clouds in large domain, long duration large eddy simulations. Geosci. Model Dev., 6, 12611273, https://doi.org/10.5194/gmd-6-1261-2013.

    • Search Google Scholar
    • Export Citation
  • Heus, T., G. van Duk, H. J. Jonker, and H. E. Van den Akker, 2008: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking. J. Atmos. Sci., 65, 25812597, https://doi.org/10.1175/2008JAS2572.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island climate research facility. J. Climate, 19, 21052117, https://doi.org/10.1175/JCLI3722.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and K. Larmer, 2021: Climatological sensitivities of shallow-cumulus bulk entrainment in continental and oceanic locations. J. Atmos. Sci., 78, 24292443, https://doi.org/10.1175/JAS-D-20-0377.1.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T., S. Low-Nam, and R. Pasch, 1983: Cumulus parameterization and rainfall rates II. Mon. Wea. Rev., 111, 815828, https://doi.org/10.1175/1520-0493(1983)111<0815:CPARRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, C., Y. Liu, S. Niu, and A. M. Vogelmann, 2012: Lateral entrainment rate in shallow cumuli: Dependence on dry air sources and probability density functions. Geophys. Res. Lett., 39, L20812, https://doi.org/10.1029/2012GL053646.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. M. Peters, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description. J. Atmos. Sci., 77, 36373660, https://doi.org/10.1175/JAS-D-19-0243.1.

    • Search Google Scholar
    • Export Citation
  • Moser, D. H., and S. Lasher-Trapp, 2017: The influence of successive thermals on entrainment and dilution in a simulated cumulus congestus. J. Atmos. Sci., 74, 375392, https://doi.org/10.1175/JAS-D-16-0144.1.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Prediction, 2000: NCEP FNL operational model global tropospheric analyses, continuing from July 1999 (updated daily). NCAR Research Data Archive, https://doi.org/10.5065/D6M043C6.

  • Peters, J. M., H. Morrison, A. C. Varble, W. M. Hannah, and S. E. Giangrande, 2020: Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations. J. Atmos. Sci., 77, 36613681, https://doi.org/10.1175/JAS-D-19-0244.1.

    • Search Google Scholar
    • Export Citation
  • Plant, R. S., 2009: Statistical properties of cloud lifecycles in cloud-resolving models. Atmos. Chem. Phys., 9, 21952205, https://doi.org/10.5194/acp-9-2195-2009.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and A. M. Blyth, 1989: Precipitation development in a New Mexico thunderstorm. Quart. J. Roy. Meteor. Soc., 115, 13971423, https://doi.org/10.1002/qj.49711549011.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2010: A direct measure of entrainment. J. Atmos. Sci., 67, 19081927, https://doi.org/10.1175/2010JAS3371.1.

  • Romps, D. M., and Z. Kuang, 2010: Nature versus nurture in shallow convection. J. Atmos. Sci., 67, 16551666, https://doi.org/10.1175/2009JAS3307.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., R. R. Rusenöktem, S. Endo, and A. M. Vogelmann, 2021: On the life cycle of a shallow cumulus cloud: Is it a bubble or plume, active or forced? J. Atmos. Sci., 78, 28232833, https://doi.org/10.1175/JAS-D-20-0361.1.

    • Search Google Scholar
    • Export Citation
  • Sakaguchi, K., and Coauthors, 2021: Determining spatial scales of soil moisture—Cloud coupling pathways using semi-idealized simulations. J. Geophys. Res. Atmos., 127, e2021JD035282, https://doi.org/10.1029/2021JD035282.

    • Search Google Scholar
    • Export Citation
  • Sakradzija, M., and C. Hohenegger, 2017: What determines the distribution of shallow convective mass flux through a cloud base? J. Atmos. Sci., 74, 26152632, https://doi.org/10.1175/JAS-D-16-0326.1.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Squires, P., and J. S. Turner, 1962: An entraining jet model for cumulo-nimbus updraughts. Tellus, 14, 422434, https://doi.org/10.3402/tellusa.v14i4.9569.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., 2002: Entrainment in stratocumulus-topped mixed layers. Quart. J. Roy. Meteor. Soc., 128, 26632690, https://doi.org/10.1256/qj.01.202.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1947: Entrainment of air into a cumulus cloud. J. Atmos. Sci., 4, 9194, https://doi.org/10.1175/1520-0469(1947)004<0091:EOAIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, H., and G. Feingold, 2006: Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects. J. Atmos. Sci., 63, 16051622, https://doi.org/10.1175/JAS3706.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J. I., 2014: Basic convective element: Bubble or plume? A historical review. Atmos. Chem. Phys., 14, 70197030, https://doi.org/10.5194/acp-14-7019-2014.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005a: Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62, 12691290, https://doi.org/10.1175/JAS3414.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, M., and P. H. Austin, 2005b: Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics. J. Atmos. Sci., 62, 12911310, https://doi.org/10.1175/JAS3415.1.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., D. Rosenfeld, and Z. Li, 2021: Sub-cloud turbulence explains cloud-base updrafts for shallow cumulus ensembles: First observational evidence. Geophys. Res. Lett., 48, e2020GL091881, https://doi.org/10.1029/2020GL091881.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 452 452 109
Full Text Views 215 215 64
PDF Downloads 267 267 70

The Role of Cloud–Cloud Interactions in the Life Cycle of Shallow Cumulus Clouds

Jingyi ChenaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jingyi Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6347-5677
,
Samson HagosaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Samson Hagos in
Current site
Google Scholar
PubMed
Close
,
Zhe FengaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Zhe Feng in
Current site
Google Scholar
PubMed
Close
,
Jerome D. FastaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jerome D. Fast in
Current site
Google Scholar
PubMed
Close
, and
Heng XiaoaPacific Northwest National Laboratory, Richland, Washington

Search for other papers by Heng Xiao in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Some of the climate research puzzles relate to a limited understanding of the critical factors governing the life cycle of cumulus clouds. These factors force the initiation and the various mixing processes during cloud life cycles. To shed some light into these processes, we tracked the life cycle of thousands of individual shallow cumulus clouds in a large-eddy simulation during the Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems field campaign in the U.S. southern Great Plains. Concurrent evolution of clouds is tracked and their respective neighboring clouds are examined. Results show that the clouds initially smaller than neighboring clouds can grow larger than the neighboring clouds by a factor of 2 within 20% of their lifetime. Two groups of the tracked clouds with growing and decaying neighboring clouds, respectively, show distinct characteristics in their life cycles. Clouds with growing neighboring clouds form above regions with larger surface heterogeneity, whereas clouds with decaying neighboring clouds are associated with less heterogeneous surfaces. Also, those with decaying neighboring clouds experience larger instability and a more humid boundary layer, indicating evaporation below the cloud base is likely occurring before those clouds are formed. Larger instability leads to higher vertical velocity and convergence within the cloud, which causes stronger surrounding downdrafts and water vapor removal in the surrounding area. The latter appears to be the reason for the decaying neighboring clouds. Understanding those processes provide insights into how cloud–cloud interactions modulate the evolution of cloud population and into how this evolution can be represented in future cumulus parameterizations.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingyi Chen, jingyi.chen@pnnl.gov

Abstract

Some of the climate research puzzles relate to a limited understanding of the critical factors governing the life cycle of cumulus clouds. These factors force the initiation and the various mixing processes during cloud life cycles. To shed some light into these processes, we tracked the life cycle of thousands of individual shallow cumulus clouds in a large-eddy simulation during the Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems field campaign in the U.S. southern Great Plains. Concurrent evolution of clouds is tracked and their respective neighboring clouds are examined. Results show that the clouds initially smaller than neighboring clouds can grow larger than the neighboring clouds by a factor of 2 within 20% of their lifetime. Two groups of the tracked clouds with growing and decaying neighboring clouds, respectively, show distinct characteristics in their life cycles. Clouds with growing neighboring clouds form above regions with larger surface heterogeneity, whereas clouds with decaying neighboring clouds are associated with less heterogeneous surfaces. Also, those with decaying neighboring clouds experience larger instability and a more humid boundary layer, indicating evaporation below the cloud base is likely occurring before those clouds are formed. Larger instability leads to higher vertical velocity and convergence within the cloud, which causes stronger surrounding downdrafts and water vapor removal in the surrounding area. The latter appears to be the reason for the decaying neighboring clouds. Understanding those processes provide insights into how cloud–cloud interactions modulate the evolution of cloud population and into how this evolution can be represented in future cumulus parameterizations.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jingyi Chen, jingyi.chen@pnnl.gov
Save