• Biddle, T. A., and Coauthors, 2021: Salton Sea aerosol exposure in mice induces a pulmonary response distinct from allergic inflammation. Sci. Total Environ., 792, 148450, https://doi.org/10.1016/j.scitotenv.2021.148450.

    • Search Google Scholar
    • Export Citation
  • Biddle, T. A., R. Chakraborty, Q. Li, M. Maltz, J. Gerrard, and D. D. Lo, 2022: The drying Salton Sea and asthma: A perspective on a “natural” disaster. Calif. Agric., 76, 2736, https://doi.org/10.3733/ca.2022a0003.

    • Search Google Scholar
    • Export Citation
  • Buck, B. J., J. King, and V. Etyemezian, 2011: Effects of salt mineralogy on dust emissions, Salton Sea, California. Soil Sci. Soc. Amer. J., 75, 19711985, https://doi.org/10.2136/sssaj2011.0049.

    • Search Google Scholar
    • Export Citation
  • Burr, A. C., and Coauthors, 2021: Lung inflammatory response to environmental dust exposure in mice suggests a link to regional respiratory disease risk. J. Inflammation Res., 14, 40354052, https://doi.org/10.2147/JIR.S320096.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118, https://doi.org/10.2151/jmsj.80.99.

    • Search Google Scholar
    • Export Citation
  • Chin, M., R. B. Rood, S.-J. Lin, J.-F. Müller, and A. M. Thompson, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties. J. Geophys. Res., 105, 24 67124 687, https://doi.org/10.1029/2000JD900384.

    • Search Google Scholar
    • Export Citation
  • Choobari, O. A., P. Zawar-Reza, and A. Sturman, 2014: The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res., 138, 152165, https://doi.org/10.1016/j.atmosres.2013.11.007.

    • Search Google Scholar
    • Export Citation
  • De Wekker, S. F., and S. D. Mayor, 2009: Observations of atmospheric structure and dynamics in the Owens valley of California with a ground-based, eye-safe, scanning aerosol lidar. J. Appl. Meteor. Climatol., 48, 14831499, https://doi.org/10.1175/2009JAMC2034.1.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and D. R. Durran, 2002: The dynamics of mountain-wave-induced rotors. J. Atmos. Sci., 59, 186201, https://doi.org/10.1175/1520-0469(2002)059<0186:TDOMWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1986: Another look at downslope windstorms. Part I: The development of analogs to supercritical flow in an infinitely deep, continuously stratified fluid. J. Atmos. Sci., 43, 25272543, https://doi.org/10.1175/1520-0469(1986)043<2527:ALADWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Springer, 59–81, https://doi.org/10.1007/978-1-935704-25-6_4.

  • Durran, D. R., 2003: Lee waves and mountain waves. Encyclopedia of Atmospheric Sciences, J. R. Holton, J. Pyle, and J. A. Curry, Eds., Elsevier Science, 1161–1169.

  • Evan, A. T., 2019: Downslope winds and dust storms in the Salton basin. Mon. Wea. Rev., 147, 23872402, https://doi.org/10.1175/MWR-D-18-0357.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, https://doi.org/10.1038/nature17149.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., B. Walkowiak, and R. Frouin, 2022a: On the misclassification of dust as cloud at an AERONET site in the Sonoran desert. J. Atmos. Oceanic Technol., 39, 181191, https://doi.org/10.1175/JTECH-D-21-0114.1.

    • Search Google Scholar
    • Export Citation
  • Evan, A. T., R. Frouin, A. Kuwano, T. Barbero, S. Wynn, and T. Robinson, 2022b: Meteorological and aerosol measurements near the Salton Sea, California. UC San Diego Library Digital Collections, accessed 31 July 2022, https://doi.org/10.6075/J0XP7547.

  • Evan, A. T., W. Porter, R. Clemesha, A. Kuwano, and R. Frouin, 2022c: Measurements of a dusty density current in the western Sonoran desert. J. Geophys. Res. Atmos. 127, e2021JD035830, https://doi.org/10.1029/2021JD035830.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., W. I. Gustafson Jr., R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham, 2006: Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model. J. Geophys. Res., 111, D21305, https://doi.org/10.1029/2005JD006721.

    • Search Google Scholar
    • Export Citation
  • Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments. Appl. Opt., 23, 652–653, https://doi.org/10.1364/AO.23.000652.

  • Field, J. P., and Coauthors, 2010: The ecology of dust. Front. Ecol. Environ., 8, 423430, https://doi.org/10.1890/090050.

  • Frie, A. L., J. H. Dingle, S. C. Ying, and R. Bahreini, 2017: The effect of a receding saline lake (the Salton Sea) on airborne particulate matter composition. Environ. Sci. Technol., 51, 82838292, https://doi.org/10.1021/acs.est.7b01773.

    • Search Google Scholar
    • Export Citation
  • Frie, A. L., and Coauthors, 2019: Dust sources in the Salton Sea basin: A clear case of an anthropogenically impacted dust budget. Environ. Sci. Technol., 53, 93789388, https://doi.org/10.1021/acs.est.9b02137.

    • Search Google Scholar
    • Export Citation
  • Giles, D. M., and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169209, https://doi.org/10.5194/amt-12-169-2019.

    • Search Google Scholar
    • Export Citation
  • Giles, J., 2005: The dustiest place on Earth. Nature, 434, 816819, https://doi.org/10.1038/434816a.

  • Ginoux, P., M. Chin, I. Tegen, J. M. Prospero, B. Holben, O. Dubovik, and S.-J. Lin, 2001: Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res., 106, 20 25520 273, https://doi.org/10.1029/2000JD000053.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev. Geophys., 50, RG3005, https://doi.org/10.1029/2012RG000388.

    • Search Google Scholar
    • Export Citation
  • Gläser, G., P. Knippertz, and B. Heinold, 2012: Orographic effects and evaporative cooling along a subtropical cold front: The case of the spectacular Saharan dust outbreak of March 2004. Mon. Wea. Rev., 140, 25202533, https://doi.org/10.1175/MWR-D-11-00315.1.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., and D. Dévényi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 1693, https://doi.org/10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, 2005: Fully coupled “online” chemistry within the WRF Model. Atmos. Environ., 39, 69576975, https://doi.org/10.1016/j.atmosenv.2005.04.027.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and B. J. Billings, 2007: The intense lee-wave rotor event of Sierra Rotors IOP 8. J. Atmos. Sci., 64, 41784201, https://doi.org/10.1175/2006JAS2008.1.

    • Search Google Scholar
    • Export Citation
  • Grubišić, V., and Coauthors, 2008: The Terrain-Induced Rotor Experiment: A field campaign overview including observational highlights. Bull. Amer. Meteor. Soc., 89, 15131534, https://doi.org/10.1175/2008BAMS2487.1.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Search Google Scholar
    • Export Citation
  • Horel, J., and Coauthors, 2002: MesoWest: Cooperative mesonets in the western United States. Bull. Amer. Meteor. Soc., 83, 211–225, https://doi.org/10.1175/1520-0477(2002)083<0211:MCMITW>2.3.CO;2.

  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, https://doi.org/10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • IID, 2016: Salton Sea air quality mitigation program. SSAQT Tech. Rep., 281 pp.

  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp.

  • Jiang, H., J. T. Farrar, R. C. Beardsley, R. Chen, and C. Chen, 2009: Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys. Res. Lett., 36, L19605, https://doi.org/10.1029/2009GL040008.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., J. D. Doyle, and R. B. Smith, 2006: Interaction between trapped waves and boundary layers. J. Atmos. Sci., 63, 617633, https://doi.org/10.1175/JAS3640.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, Q., M. Liu, and J. D. Doyle, 2011: Influence of mesoscale dynamics and turbulence on fine dust transport in Owens valley. J. Appl. Meteor. Climatol., 50, 2038, https://doi.org/10.1175/2010JAMC2522.1.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and Coauthors, 2015: Ceilometer calibration for retrieval of aerosol optical properties. J. Quant. Spectrosc. Radiat. Transfer, 153, 4956, https://doi.org/10.1016/j.jqsrt.2014.10.009.

    • Search Google Scholar
    • Export Citation
  • Jones, B. A., and J. Fleck, 2020: Shrinking lakes, air pollution, and human health: Evidence from California’s Salton Sea. Sci. Total Environ., 712, 136490, https://doi.org/10.1016/j.scitotenv.2019.136490.

  • Karyampudi, V. M., S. E. Koch, C. Chen, J. W. Rottman, and M. L. Kaplan, 1995: The influence of the Rocky Mountains on the 13–14 April 1986 severe weather outbreak. Part II: Evolution of a prefrontal bore and its role in triggering a squall line. Mon. Wea. Rev., 123, 14231446, https://doi.org/10.1175/1520-0493(1995)123<1423:TIOTRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, K.-M., and Coauthors, 2021: Modeling Asian dust storms using WRF-Chem during the DRAGON-Asia field campaign in April 2012. J. Geophys. Res. Atmos., 126, e2021JD034793, https://doi.org/10.1029/2021JD034793.

  • Knippertz, P., 2014: Meteorological aspects of dust storms. Mineral Dust, P. Knippertz and J. Stuut, Eds., Springer, 121–147, https://doi.org/10.1007/978-94-017-8978-3_6.

  • Knippertz, P., C. Deutscher, K. Kandler, T. Müller, O. Schulz, and L. Schütz, 2007: Dust mobilization due to density currents in the Atlas region: Observations from the Saharan Mineral Dust Experiment 2006 field campaign. J. Geophys. Res., 112, D21109, https://doi.org/10.1029/2007JD008774.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., P. B. Dorian, R. Ferrare, S. H. Melfi, W. C. Skillman, and D. Whiteman, 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, https://doi.org/10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kok, J. F., and Coauthors, 2014: An improved dust emission model—Part 1: Model description and comparison against measurements. Atmos. Chem. Phys., 14, 13 02313 041, https://doi.org/10.5194/acp-14-13023-2014.

    • Search Google Scholar
    • Export Citation
  • Kok, J. F., D. S. Ward, N. M. Mahowald, and A. T. Evan, 2018: Global and regional importance of the direct dust-climate feedback. Nat. Commun., 9, 241, https://doi.org/10.1038/s41467-017-02620-y.

    • Search Google Scholar
    • Export Citation
  • LeGrand, S. L., C. Polashenski, T. W. Letcher, G. A. Creighton, S. E. Peckham, and J. D. Cetola, 2019: The AFWA dust emission scheme for the GOCART aerosol model in WRF-Chem v3.8.1. Geosci. Model Dev., 12, 131166, https://doi.org/10.5194/gmd-12-131-2019.

    • Search Google Scholar
    • Export Citation
  • Marcos, C. R., J. L. Gómez-Amo, C. Peris, R. Pedrós, M. P. Utrillas, and J. A. Martínez-Lozano, 2018: Analysis of four years of ceilometer-derived aerosol backscatter profiles in a coastal site of the western Mediterranean. Atmos. Res., 213, 331–345, https://doi.org/10.1016/j.atmosres.2018.06.016.

  • Marsham, J. H., P. Knippertz, N. S. Dixon, D. J. Parker, and G. M. Lister, 2011: The importance of the representation of deep convection for modeled dust-generating winds over West Africa during summer. Geophys. Res. Lett., 38, L16803, https://doi.org/10.1029/2011GL048368.

    • Search Google Scholar
    • Export Citation
  • Marticorena, B., and G. Bergametti, 1995: Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme. J. Geophys. Res., 100, 16 415–16 430, https://doi.org/10.1029/95JD00690.

  • Mayr, G. J., and L. Armi, 2010: The influence of downstream diurnal heating on the descent of flow across the Sierras. J. Appl. Meteor. Climatol., 49, 19061912, https://doi.org/10.1175/2010JAMC2516.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, https://doi.org/10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miller, P., M. Williams, and T. Mote, 2021: Modeled atmospheric optical and thermodynamic responses to an exceptional trans-Atlantic dust outbreak. J. Geophys. Res., 126, e2020JD032909, https://doi.org/10.1029/2020JD032909.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163–187.

    • Search Google Scholar
    • Export Citation
  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer. Bound.-Layer Meteor., 124, 117128, https://doi.org/10.1007/s10546-006-9103-3.

    • Search Google Scholar
    • Export Citation
  • Nappo, C. J., 2013: An Introduction to Atmospheric Gravity Waves. Academic Press, 359 pp.

  • NCEI, 2022: U.S. climate normals. NCEI, accessed 31 July 2022, https://www.ncei.noaa.gov/products/land-based-station/us-climate-normals.

  • NCEP, 2013: The GFS atmospheric model. NCEP Office Note 442, 14 pp.

  • Parajuli, S. P., and C. S. Zender, 2017: Connecting geomorphology to dust emission through high-resolution mapping of global land cover and sediment supply. Aeolian Res., 27, 4765, https://doi.org/10.1016/j.aeolia.2017.06.002.

    • Search Google Scholar
    • Export Citation
  • Parajuli, S. P., and C. S. Zender, 2018: Projected changes in dust emissions and regional air quality due to the shrinking Salton Sea. Aeolian Res., 33, 8292, https://doi.org/10.1016/j.aeolia.2018.05.004.

    • Search Google Scholar
    • Export Citation
  • Peckham, S. E., and Coauthors, 1991: WRF-Chem version 4.4 user’s guide. NCAR Tech. Rep., 68 pp., https://ruc.noaa.gov/wrf/wrf-chem/Users_guide.pdf.

  • Pokharel, A. K., M. L. Kaplan, and S. Fiedler, 2017: Subtropical dust storms and downslope wind events. J. Geophys. Res. Atmos., 122, 10 191–10 205, https://doi.org/10.1002/2017JD026942.

    • Search Google Scholar
    • Export Citation
  • Poudel, U., S. Ahmad, and H. Stephen, 2021: Studying the intra-annual variability in surface area and volume of Salton Sea, California, using remote sensing-based water indices and GIS. World Environmental and Water Resources Congress 2021, Online, American Society of Civil Engineers, 769–783, https://doi.org/10.1061/9780784483466.070.

  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000RG000095.

  • Pu, B., and P. Ginoux, 2018: How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys., 18, 12 49112 510, https://doi.org/10.5194/acp-18-12491-2018.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, T. L. Keller, D. Levinson, and L. Fedor, 1997: Observations, simulations, and analysis of nonstationary trapped lee waves. J. Atmos. Sci., 54, 13081333, https://doi.org/10.1175/1520-0469(1997)054<1308:OSAAON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryerson, T., and Coauthors, 2013: The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study. J. Geophys. Res. Atmos., 118, 5830–5866, https://doi.org/10.1002/jgrd.50331.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, https://doi.org/10.1002/qj.49707532308.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., and Coauthors, 2011: Dust cycle: An emerging core theme in Earth system science. Aeolian Res., 2, 181–204, https://doi.org/10.1016/j.aeolia.2011.02.001.

  • Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97.

  • Smith, R. B., 2019: 100 years of progress on mountain meteorology research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0022.1.

    • Search Google Scholar
    • Export Citation
  • Stephen, M. F., and D. S. Gorsline, 1975: Sedimentary aspects of the new river delta, Salton Sea, Imperial County, California. Deltas: Models for Exploration, M. L. Broussard, Ed., Vol. 2, Houston Geological Society, 276–282.

  • Strauss, L., S. Serafin, and V. Grubišić, 2016: Atmospheric rotors and severe turbulence in a long deep valley. J. Atmos. Sci., 73, 14811506, https://doi.org/10.1175/JAS-D-15-0192.1.

    • Search Google Scholar
    • Export Citation
  • Sweeney, M. R., E. V. McDonald, and V. Etyemezian, 2011: Quantifying dust emissions from desert landforms, eastern Mojave Desert, USA. Geomorphology, 135, 2134, https://doi.org/10.1016/j.geomorph.2011.07.022.

    • Search Google Scholar
    • Export Citation
  • Todd, M. C., R. Washington, S. Raghavan, G. Lizcano, and P. Knippertz, 2008: Regional model simulations of the Bodélé low-level jet of northern Chad during the Bodélé Dust Experiment (BoDEx 2005). J. Climate, 21, 9951012, https://doi.org/10.1175/2007JCLI1766.1.

    • Search Google Scholar
    • Export Citation
  • Wiegner, M., and Coauthors, 2014: What is the benefit of ceilometers for aerosol remote sensing? An answer from EARLINET. Atmos. Meas. Tech., 7, 19791997, https://doi.org/10.5194/amt-7-1979-2014.

    • Search Google Scholar
    • Export Citation
  • Yang, S., J. Preißler, M. Wiegner, S. von Löwis, G. N. Petersen, M. M. Parks, and D. C. Finger, 2020: Monitoring dust events using Doppler lidar and ceilometer in Iceland. Atmosphere, 11, 1294, https://doi.org/10.3390/atmos11121294.

    • Search Google Scholar
    • Export Citation
  • Yuan, T., S. Chen, J. Huang, X. Zhang, Y. Luo, X. Ma, and G. Zhang, 2019: Sensitivity of simulating a dust storm over central Asia to different dust schemes using the WRF-Chem model. Atmos. Environ., 207, 1629, https://doi.org/10.1016/j.atmosenv.2019.03.014.

    • Search Google Scholar
    • Export Citation
  • Zhao, A., C. L. Ryder, and L. J. Wilcox, 2022: How well do the CMIP6 models simulate dust aerosols? Atmos. Chem. Phys., 22, 20952119, https://doi.org/10.5194/acp-22-2095-2022.

    • Search Google Scholar
    • Export Citation
  • Zucca, C., N. Middleton, U. Kang, and H. Liniger, 2021: Shrinking water bodies as hotspots of sand and dust storms: The role of land degradation and sustainable soil and water management. CATENA, 207, 105669, https://doi.org/10.1016/j.catena.2021.105669.

All Time Past Year Past 30 Days
Abstract Views 412 412 84
Full Text Views 109 109 59
PDF Downloads 123 123 61

Characteristics of Dust Storms Generated by Trapped Waves in the Lee of Mountains

Amato T. EvanaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Amato T. Evan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2812-3750
,
William C. PorterbDepartment of Environmental Sciences, University of California, Riverside, Riverside, California

Search for other papers by William C. Porter in
Current site
Google Scholar
PubMed
Close
,
Rachel ClemeshaaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Rachel Clemesha in
Current site
Google Scholar
PubMed
Close
,
Alex KuwanoaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Alex Kuwano in
Current site
Google Scholar
PubMed
Close
, and
Robert FrouinaScripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Robert Frouin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In situ observations and output from a numerical model are utilized to examine three dust outbreaks that occurred in the northwestern Sonoran Desert. Via analysis of these events, it is shown that trapped waves generated in the lee of an upwind mountain range produced high surface wind speeds along the desert floor and the observed dust storms. Based on analysis of observational and model output, general characteristics of dust outbreaks generated by trapped waves are suggested, including dust-layer depths and concentrations that are dependent upon wave phase and height above the surface, emission and transport associated with the presence of a low-level jet, and wave-generated high wind speeds and thus emission that occurs far downwind of the wave source. Trapped lee waves are ubiquitous in Earth’s atmosphere and thus it is likely that the meteorological aspects of the dust storms examined here are also relevant to understanding dust in other regions. These dust outbreaks occurred near the Salton Sea, an endorheic inland body of water that is rapidly drying due to changes in water-use management. As such, these findings are also relevant in terms of understanding how future changes in size of the Salton Sea will impact dust storms and air quality there.

Significance Statement

Dust storms are ubiquitous in Earth’s atmosphere, yet the physical processes underlying dust emission and subsequent transport are not always understood, in part due to the wide variety of meteorological processes that can generate high winds and dust. Here we use in situ measurements and numerical modeling to demonstrate that vertically trapped atmospheric waves generated by air flowing over a mountain are one such mechanism that can produce dust storms. We suggest several features of these dust outbreaks that are specific to their production by trapped waves. As the study area is a region undergoing rapid environmental change, these results are relevant in terms of predicting future dust there.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amato Evan, aevan@ucsd.edu

Abstract

In situ observations and output from a numerical model are utilized to examine three dust outbreaks that occurred in the northwestern Sonoran Desert. Via analysis of these events, it is shown that trapped waves generated in the lee of an upwind mountain range produced high surface wind speeds along the desert floor and the observed dust storms. Based on analysis of observational and model output, general characteristics of dust outbreaks generated by trapped waves are suggested, including dust-layer depths and concentrations that are dependent upon wave phase and height above the surface, emission and transport associated with the presence of a low-level jet, and wave-generated high wind speeds and thus emission that occurs far downwind of the wave source. Trapped lee waves are ubiquitous in Earth’s atmosphere and thus it is likely that the meteorological aspects of the dust storms examined here are also relevant to understanding dust in other regions. These dust outbreaks occurred near the Salton Sea, an endorheic inland body of water that is rapidly drying due to changes in water-use management. As such, these findings are also relevant in terms of understanding how future changes in size of the Salton Sea will impact dust storms and air quality there.

Significance Statement

Dust storms are ubiquitous in Earth’s atmosphere, yet the physical processes underlying dust emission and subsequent transport are not always understood, in part due to the wide variety of meteorological processes that can generate high winds and dust. Here we use in situ measurements and numerical modeling to demonstrate that vertically trapped atmospheric waves generated by air flowing over a mountain are one such mechanism that can produce dust storms. We suggest several features of these dust outbreaks that are specific to their production by trapped waves. As the study area is a region undergoing rapid environmental change, these results are relevant in terms of predicting future dust there.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Amato Evan, aevan@ucsd.edu

Supplementary Materials

    • Supplemental Materials (ZIP 182 MB)
Save