Vertical Motions Forced by Small-Scale Terrain and Cloud Microphysical Response in Extratropical Precipitation Systems

Bart Geerts aDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
,
Coltin Grasmick aDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Coltin Grasmick in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber bDepartment of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Troy J. Zaremba bDepartment of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Troy J. Zaremba in
Current site
Google Scholar
PubMed
Close
,
Lulin Xue cNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
, and
Katja Friedrich dDepartment of Atmospheric and Ocean Sciences, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.

Significance Statement

Mountains in the midlatitude belt and elsewhere receive more precipitation than the surrounding lowlands. The mountain terrain often is complex, and it remains unclear exactly where this precipitation enhancement occurs, because weather radars are challenged by beam blockage and the gauge network is too sparse to capture the precipitation heterogeneity over complex terrain. This study uses airborne profiling radar and high-resolution numerical simulations for four winter storms over a series of ridges in Idaho. One key finding is that while instantaneous airborne radar transects of the cross-mountain flow, vertical drafts, and reflectivity contain much transient small-scale information, time-averaged transects look very much like the model transects. The model indicates substantial surface precipitation enhancement over terrain, peaking over and just downwind of individual ridges. Radar observations suggest less enhancement, but the radar-based assessment is uncertain. The second key conclusion is that, even though orographic gravity waves are felt all the way up into the upper troposphere, the orographic precipitation enhancement is due to processes very close to the terrain.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu

Abstract

Airborne vertically profiling Doppler radar data and output from a ∼1-km-grid-resolution numerical simulation are used to examine how relatively small-scale terrain ridges (∼10–25 km apart and ∼0.5–1.0 km above the surrounding valleys) impact cross-mountain flow, cloud processes, and surface precipitation in deep stratiform precipitation systems. The radar data were collected along fixed flight tracks aligned with the wind, about 100 km long between the Snake River Plain and the Idaho Central Mountains, as part of the 2017 Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE). Data from repeat flight legs are composited in order to suppress transient features and retain the effect of the underlying terrain. Simulations closely match observed series of terrain-driven deep gravity waves, although the simulated wave amplitude is slightly exaggerated. The deep waves produce pockets of supercooled liquid water in the otherwise ice-dominated clouds (confirmed by flight-level observations and the model) and distort radar-derived hydrometeor trajectories. Snow particles aloft encounter several wave updrafts and downdrafts before reaching the ground. No significant wavelike modulation of radar reflectivity or model ice water content occurs. The model does indicate substantial localized precipitation enhancement (1.8–3.0 times higher than the mean) peaking just downwind of individual ridges, especially those ridges with the most intense wave updrafts, on account of shallow pockets of high liquid water content on the upwind side, leading to the growth of snow and graupel, falling out mostly downwind of the crest. Radar reflectivity values near the surface are complicated by snowmelt, but suggest a more modest enhancement downwind of individual ridges.

Significance Statement

Mountains in the midlatitude belt and elsewhere receive more precipitation than the surrounding lowlands. The mountain terrain often is complex, and it remains unclear exactly where this precipitation enhancement occurs, because weather radars are challenged by beam blockage and the gauge network is too sparse to capture the precipitation heterogeneity over complex terrain. This study uses airborne profiling radar and high-resolution numerical simulations for four winter storms over a series of ridges in Idaho. One key finding is that while instantaneous airborne radar transects of the cross-mountain flow, vertical drafts, and reflectivity contain much transient small-scale information, time-averaged transects look very much like the model transects. The model indicates substantial surface precipitation enhancement over terrain, peaking over and just downwind of individual ridges. Radar observations suggest less enhancement, but the radar-based assessment is uncertain. The second key conclusion is that, even though orographic gravity waves are felt all the way up into the upper troposphere, the orographic precipitation enhancement is due to processes very close to the terrain.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bart Geerts, geerts@uwyo.edu
Save
  • Barstad, I., and G. N. Caroletti, 2013: Orographic precipitation across an island in southern Norway: Model evaluation of time-step precipitation. Quart. J. Roy. Meteor. Soc., 139, 15551565, https://doi.org/10.1002/qj.2067.

    • Search Google Scholar
    • Export Citation
  • Cann, M. D., K. Friedrich, J. R. French, and D. Behringer 2022: A case study of cloud-top Kelvin–Helmholtz waves near the dendritic growth zone. J. Atmos. Sci., 79, 531549, https://doi.org/10.1175/JAS-D-21-0106.1.

    • Search Google Scholar
    • Export Citation
  • Chu, X., B. Geerts, L. Xue, and R. Rasmussen, 2017: Large-eddy simulations of the impact of ground-based glaciogenic seeding on shallow orographic convection: A case study. J. Appl. Meteor. Climatol., 56, 6984, https://doi.org/10.1175/JAMC-D-16-0191.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, https://doi.org/10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daly, C., M. Halbleib, J. I. Smith, W. P. Gibson, M. K. Doggett, G. H. Taylor, J. Curtis, and P. P. Pasteris, 2008: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol., 28, 20312064, https://doi.org/10.1002/joc.1688.

    • Search Google Scholar
    • Export Citation
  • Damiani, R., and S. Haimov, 2006: A high-resolution dual-Doppler technique for fixed multiantenna airborne radar. IEEE Trans. Geosci. Remote Sens., 44, 34753489, https://doi.org/10.1109/TGRS.2006.881745.

    • Search Google Scholar
    • Export Citation
  • Douglas, C. K. M., and J. Glasspoole, 1947: Meteorological conditions in heavy orographic rainfall in the British Isles. Quart. J. Roy. Meteor. Soc., 73, 1142, https://doi.org/10.1002/qj.49707331503.

    • Search Google Scholar
    • Export Citation
  • Durran, D., 2003: Lee waves and mountain waves. Encyclopedia of Atmospheric Science, Elsevier Science, 1161–1170.

  • French, J. R., and D. Behringer, 2021: UW King Air manually corrected Nevzorov Liquid/total/ice water content, version 1.0. UCAR/NCAR Earth Observing Laboratory, accessed 10 June 2021, https://doi.org/10.26023/2QRK-XSBA-RS0P.

  • French, J. R., S. J. Haimov, L. D. Oolman, V. Grubišić, S. Serafin, and L. Strauss, 2015: Wave-induced boundary-layer separation in the lee of the Medicine Bow Mountains. Part I: Observations. J. Atmos. Sci., 72, 48454863, https://doi.org/10.1175/JAS-D-14-0376.1.

    • Search Google Scholar
    • Export Citation
  • Fuhrer, O., and C. Schär, 2005: Embedded cellular convection in moist flow past topography. J. Atmos. Sci., 62, 28102828, https://doi.org/10.1175/JAS3512.1.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R., M. Falvey, and A. Montecinos, 2016: Orographic precipitation in coastal southern Chile: Mean distribution, temporal variability, and linear contribution. J. Hydrometeor., 17, 11851202, https://doi.org/10.1175/JHM-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., B. Smull, and C. Mass, 2007: Multiscale mountain waves influencing a major orographic precipitation event. J. Atmos. Sci., 64, 711737, https://doi.org/10.1175/JAS3876.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Q. Miao, 2005: The use of millimeter Doppler radar echoes to estimate vertical air velocities in the fair-weather convective boundary layer. J. Atmos. Oceanic Technol., 22, 225246, https://doi.org/10.1175/JTECH1699.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Y. Yang, R. Rasmussen, S. Haimov, and B. Pokharel, 2015: Snow growth and transport patterns in orographic storms as estimated from airborne vertical-plane dual-Doppler radar data. Mon. Wea. Rev., 143, 644665, https://doi.org/10.1175/MWR-D-14-00199.1.

    • Search Google Scholar
    • Export Citation
  • Grasmick, C., and B. Geerts, 2020: Detailed dual-Doppler structure of Kelvin–Helmholtz waves from an airborne profiling radar over complex terrain. Part I: Dynamic structure. J. Atmos. Sci., 77, 17611782, https://doi.org/10.1175/JAS-D-19-0108.1.

    • Search Google Scholar
    • Export Citation
  • Heimes, K., and Coauthors, 2021: Vertical motions in orographic cloud systems over the Payette River basin. Part III: An evaluation of the impact of transient updrafts on targeting during orographic cloud seeding operations. J. Appl. Meteor. Climatol., 61, 17531777, https://doi.org/10.1175/JAMC-D-21-0230.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and S. Medina, 2005: Turbulence as a mechanism for orographic precipitation enhancement. J. Atmos. Sci., 62, 35993623, https://doi.org/10.1175/JAS3555.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., and Coauthors, 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462477, https://doi.org/10.1016/j.atmosres.2010.04.010.

    • Search Google Scholar
    • Export Citation
  • Jing, X., B. Geerts, Y. Wang, and C. Liu, 2017: Evaluating seasonal orographic precipitation in the interior western United States using gauge data, gridded precipitation estimates, and a regional climate simulation. J. Hydrometeor., 18, 25412558, https://doi.org/10.1175/JHM-D-17-0056.1.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. O. G. Persson, S. Haimov, and M. D. Shupe, 2016: Mountain waves and orographic precipitation in a northern Colorado winter storm. Quart. J. Roy. Meteor. Soc., 142, 836853, https://doi.org/10.1002/qj.2685.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, https://doi.org/10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., J. W. Strapp, G. A. Isaac, and E. Emery, 2013: Improved airborne hot-wire measurements of ice water content in clouds. J. Atmos. Oceanic Technol., 30, 21212131, https://doi.org/10.1175/JTECH-D-13-00007.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2020: A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys., 20, 13911429, https://doi.org/10.5194/acp-20-1391-2020.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., 1972: The measurement of air velocity and temperature using the NCAR Buffalo aircraft measuring system. NCAR Tech. Note NCAR-TN EDD-74, 39 pp., https://doi.org/10.5065/D6C8277W.

  • Liebe, H. J., T. Manabe, and G. A. Hufford, 1989: Millimeter-wave attenuation and delay rates due to fog/cloud conditions. IEEE Trans. Antennas Propag., 37, 16171612, https://doi.org/10.1109/8.45106.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J., M. Hughes, E. Gutmann, and S. Kapnick, 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Search Google Scholar
    • Export Citation
  • Massmann, A. K., J. R. Minder, R. D. Garreaud, D. E. Kingsmill, R. A. Valenzuela, A. Montecinos, S. L. Fults, and J. R. Snider, 2017: The Chilean Coastal Orographic Precipitation Experiment: Observing the influence of microphysical rain regimes on coastal orographic precipitation. J. Hydrometeor., 18, 27232743, https://doi.org/10.1175/JHM-D-17-0005.1.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niu, G.-Y., and Coauthors, 2011: The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res., 116, D12109, https://doi.org/10.1029/2010JD015139.

    • Search Google Scholar
    • Export Citation
  • Pokharel, B., and G. Vali, 2011: Evaluation of collocated measurements of radar reflectivity and particle sizes in ice clouds. J. Appl. Meteor. Climatol., 50, 21042119, https://doi.org/10.1175/JAMC-D-10-05010.1.

    • Search Google Scholar
    • Export Citation
  • Prein, A. F., G. J. Holland, R. M. Rasmussen, J. Done, K. Ikeda, M. P. Clark, and C. H. Liu, 2013: Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J. Climate, 26, 48484857, https://doi.org/10.1175/JCLI-D-12-00727.1.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., J. B. Snider, and J. L. Coen, 2000: Influences of storm-embedded orographic gravity waves on cloud liquid water and precipitation. J. Appl. Meteor. Climatol., 39, 733759, https://doi.org/10.1175/1520-0450(2000)039<0733:IOSEOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., R. M. Rasmussen, and R. T. Bruintjes, 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, https://doi.org/10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Roe, G. H., 2005: Orographic precipitation. Annu. Rev. Earth Planet. Sci., 33, 645671, https://doi.org/10.1146/annurev.earth.33.092203.122541.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from Snowpack Telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, https://doi.org/10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and I. Barstad, 2004: A linear theory of orographic precipitation. J. Atmos. Sci., 61, 13771391, https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2019: A transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and T. Eidhammer, 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, https://doi.org/10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • University of Wyoming Research Flight Center, 2017a: Flight level data from the University of Wyoming King Air during the Seeded and Natural Orographic Wintertime clouds—the Idaho Experiment (SNOWIE) project, version 1.0. University of Wyoming Dept. of Atmospheric Science, accessed 10 January 2021, https://doi.org/10.15786/M2MW9F.

  • University of Wyoming Research Flight Center, 2017b: Wyoming Cloud Radar data from the University of Wyoming King Air during the University of Wyoming King Air during the Seeded and Natural Orographic Wintertime clouds—the Idaho Experiment (SNOWIE) project, version 1.0. University of Wyoming Dept. of Atmospheric Science, accessed 10 January 2021, https://doi.org/10.15786/M2CD4J.

  • Vali, G., and S. Haimov, 2001: Observed extinction by clouds at 95 GHz. IEEE Trans. Geosci. Remote Sens., 39, 190193, https://doi.org/10.1109/36.898682.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2022: Comparison between observed and simulated AgI seeding impacts in a well-observed case from the SNOWIE field program. J. Appl. Meteor. Climatol., 61, 345367, https://doi.org/10.1175/JAMC-D-21-0103.1.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. McMurdie, and R. Conrick, 2021: Microphysical enhancement processes within stratiform precipitation on the barrier and sub-barrier scale of the Olympic Mountains. Mon. Wea. Rev., 149, 503520, https://doi.org/10.1175/MWR-D-20-0164.1.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022a: Vertical motions in orographic cloud systems over the Payette River basin. Part I: Uncertainty in recovery of vertical motions from airborne Doppler radial velocity measurements. J. Appl. Meteor. Climatol., 61, 17131731, https://doi.org/10.1175/JAMC-D-21-0228.1.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022b: Vertical motions in orographic cloud systems over the Payette River basin. Part II: Fixed and transient updrafts and their relationship to forcing. J. Appl. Meteor. Climatol., 61, 17331751, https://doi.org/10.1175/JAMC-D-21-0229.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 694 503 45
Full Text Views 352 325 30
PDF Downloads 349 312 26