• Anstey, J. A., T. P. Banyard, N. Butchart, L. Coy, P. A. Newman, S. Osprey, and C. J. Wright, 2021: Prospect of increased disruption to the QBO in a changing climate. Geophys. Res. Lett., 48, e2021GL093058, https://doi.org/10.1029/2021GL093058.

    • Search Google Scholar
    • Export Citation
  • Becker, E., and S. L. Vadas, 2018: Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model. J. Geophys. Res. Atmos., 123, 26052627, https://doi.org/10.1002/2017JD027460.

    • Search Google Scholar
    • Export Citation
  • Bossert, K., C. G. Kruse, C. J. Heale, D. C. Fritts, B. P. Williams, J. B. Snively, P.-D. Pautet, and M. J. Taylor, 2017: Secondary gravity wave generation over New Zealand during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 122, 78347850, https://doi.org/10.1002/2016JD026079.

    • Search Google Scholar
    • Export Citation
  • Brasseur, G., and S. Solomon, 1986: Aeronomy of the Middle Atmosphere. D. Reidel Publishing Co., 452 pp.

  • Burrage, M. D., M. E. Hagan, W. R. Skinner, D. L. Wu, and P. B. Hays, 1995: Long-term variability in the solar diurnal tide observed by HRDI and simulated by the GSWM. Geophys. Res. Lett., 22, 26412644, https://doi.org/10.1029/95GL02635.

    • Search Google Scholar
    • Export Citation
  • Chapman, S., and R. S. Lindzen, 1970: Atmospheric Tides: Thermal and Gravitational. Gordon and Breach, 200 pp.

  • Chipperfield, M. P., L. J. Gray, J. S. Kinnersley, and J. Zawodny, 1994: A two-dimensional model study of the QBO signal in SAGE II N2 and O3. Geophys. Res. Lett., 21, 589592, https://doi.org/10.1029/94GL00211.

    • Search Google Scholar
    • Export Citation
  • Cullens, C. Y., S. L. England, T. J. Immel, A. Maute, B. J. Harding, C. C. Triplet, J. J. Makela, and M. H. Stevens, 2022: Seasonal variations of medium-scale waves observed by ICON-MIGHTI. Geophys. Res. Lett., 49, e2022GL099383, https://doi.org/10.1029/2022GL099383.

    • Search Google Scholar
    • Export Citation
  • Davis, R. N., J. Du, A. K. Smith, W. E. Ward, and N. J. Mitchell, 2013: The diurnal and semidiurnal tides over Ascension Island (8°S, 14°W) and their interaction with the stratospheric quasi-biennial oscillation: Studies with meteor radar, eCMAM and WACCM. Atmos. Chem. Phys., 13, 95439564, https://doi.org/10.5194/acp-13-9543-2013.

    • Search Google Scholar
    • Export Citation
  • Dhadly, M. S., J. T. Emmert, D. P. Drob, J. P. McCormack, and R. J. Niciejewski, 2018: Short-term and interannual variations of migrating diurnal and semidiurnal tides in the mesosphere and lower thermosphere. J. Geophys. Res. Space Phys., 123, 71067123, https://doi.org/10.1029/2018JA025748.

    • Search Google Scholar
    • Export Citation
  • Gan, Q., J. Du, W. E. Ward, S. R. Beagley, V. I. Fomichev, and S. Zhang, 2014: Climatology of the diurnal tides from eCMAM30 (1979 to 2010) and its comparison with SABER. Earth Planets Space, 66, 103, https://doi.org/10.1186/1880-5981-66-103.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102, 26 01926 032, https://doi.org/10.1029/97JD00207.

    • Search Google Scholar
    • Export Citation
  • Groves, G. V., and J. M. Forbes, 1985: Mean zonal and meridional accelerations and mean heating induced by solar tides for equinox and solstice conditions. Planet. Space Sci., 33, 283293, https://doi.org/10.1016/0032-0633(85)90060-1.

    • Search Google Scholar
    • Export Citation
  • Gu, H., and J. Du, 2018: On the roles of advection and solar heating in seasonal variation of the migrating diurnal tide in the stratosphere, mesosphere, and lower thermosphere. Atmosphere, 9, 440, https://doi.org/10.3390/atmos9110440.

    • Search Google Scholar
    • Export Citation
  • Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, 1999: QBO effects on the diurnal tide in the upper atmosphere. Earth Planets Space, 51, 571578, https://doi.org/10.1186/BF03353216.

    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., 1971: A generalized model of resolving disturbances into progressive and retrogressive waves by space Fourier and time cross-spectral analyses. J. Meteor. Soc. Japan, 49, 125128, https://doi.org/10.2151/jmsj1965.49.2_125.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., and Coauthors, 1994: Observations of the diurnal tide from space. J. Atmos. Sci., 51, 30773093, https://doi.org/10.1175/1520-0469(1994)051<3077:OOTDTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1972: Momentum deposition by atmospheric waves, and its effects on thermospheric circulation. Space Res., 12, 11571161.

    • Search Google Scholar
    • Export Citation
  • Kang, M.-J., H.-Y. Chun, and R. R. Garcia, 2020: Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption. Atmos. Chem. Phys., 20, 14 66914 693, https://doi.org/10.5194/acp-20-14669-2020.

    • Search Google Scholar
    • Export Citation
  • Karlsson, B., and E. Becker, 2016: How does interhemispheric coupling contribute to cool down the summer polar mesosphere? J. Climate, 29, 88078821, https://doi.org/10.1175/JCLI-D-16-0231.1.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., 1997: Long-term variations of zonal mean winds and (1, 1) driving in the equatorial lower thermosphere. J. Atmos. Sol.-Terr. Phys., 59, 14831490, https://doi.org/10.1016/S1364-6826(96)00150-2.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., and P. B. Hays, 1994: An estimate of the momentum deposition in the lower thermosphere by the observed diurnal tide. J. Atmos. Sci., 51, 30943105, https://doi.org/10.1175/1520-0469(1994)051<3094:AEOTMD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., D. M. Riggin, D. A. Ortland, S. W. Nesbitt, and R. A. Vincent, 2007: Variability of mesospheric diurnal tides and tropospheric diurnal heating during 1997–1998. J. Geophys. Res., 112, D20110, https://doi.org/10.1029/2007JD008578.

    • Search Google Scholar
    • Export Citation
  • Lieberman, R. S., D. A. Ortland, D. M. Riggin, Q. Wu, and C. Jacobi, 2010: Momentum budget of the migrating diurnal tide in the mesosphere and lower thermosphere. J. Geophys. Res., 115, D20105, https://doi.org/10.1029/2009JD013684.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Thermally driven diurnal tide in the atmosphere. Quart. J. Roy. Meteor. Soc., 93, 1842, https://doi.org/10.1002/qj.49709339503.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1968: The application of classical atmospheric tidal theory. Proc. Roy. Soc. London, 303A, 299316, https://doi.org/10.1098/rspa.1968.0052.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1981: Turbulence and stress owing to gravity wave and tidal break-down. J. Geophys. Res., 86, 97079714, https://doi.org/10.1029/JC086iC10p09707.

    • Search Google Scholar
    • Export Citation
  • Liu, H., N. Pedatella, and K. Hocke, 2017: Medium-scale gravity wave activity in the bottomside F region in tropical regions. Geophys. Res. Lett., 44, 70997105, https://doi.org/10.1002/2017GL073855.

    • Search Google Scholar
    • Export Citation
  • Liu, H.-L., 2020: Day-to-day variability of prereversal enhancement in the vertical ion drift in response to large-scale forcing from the lower atmosphere. Space Wea., 18, e2019SW002334, https://doi.org/10.1029/2019SW002334.

    • Search Google Scholar
    • Export Citation
  • Liu, M., J. Xu, H. Liu, and X. Liu, 2016: Possible modulation of migrating diurnal tide by latitudinal gradient of zonal wind observed by SABER/TIMED. Sci. China Earth Sci., 59, 408417, https://doi.org/10.1007/s11430-015-5185-4.

    • Search Google Scholar
    • Export Citation
  • Lu, X., H.-L. Liu, A. Z. Liu, J. Yue, J. M. McInerney, and Z. Li, 2012: Momentum budget of the migrating diurnal tide in the Whole Atmosphere Community Climate Model at vernal equinox. J. Geophys. Res., 117, D07112, https://doi.org/10.1029/2011JD017089.

    • Search Google Scholar
    • Export Citation
  • Lund, T. S., D. C. Fritts, K. Wan, B. Laughman, and H.-L. Liu, 2020: Numerical simulation of mountain waves over the southern Andes. Part I: Mountain wave and secondary wave character, evolutions, and breaking. J. Atmos. Sci., 77, 43374356, https://doi.org/10.1175/JAS-D-19-0356.1.

    • Search Google Scholar
    • Export Citation
  • Mayr, H. G., and J. G. Mengel, 2005: Interannual variations of the diurnal tide in the mesosphere generated by the quasi-biennial oscillation. J. Geophys. Res., 110, D10111, https://doi.org/10.1029/2004JD005055.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., 2002a: The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part I: The role of gravity waves and planetary waves. J. Atmos. Sci., 59, 893906, https://doi.org/10.1175/1520-0469(2002)059<0893:TSVOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., 2002b: The seasonal variation of the propagating diurnal tide in the mesosphere and lower thermosphere. Part II: The role of tidal heating and zonal mean winds. J. Atmos. Sci., 59, 907922, https://doi.org/10.1175/1520-0469(2002)059<0907:TSVOTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyoshi, Y., H. Jin, H. Fujiwara, and H. Shinagawa, 2018: Numerical study of traveling ionospheric disturbances generated by an upward propagating gravity wave. J. Geophys. Res. Space Phys., 123, 21412155, https://doi.org/10.1002/2017JA025110.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., L. Coy, S. Pawson, and L. R. Lait, 2016: The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 87918797, https://doi.org/10.1002/2016GL070373.

    • Search Google Scholar
    • Export Citation
  • Ortland, D. A., 2017: Daily estimates of the migrating tide and zonal mean temperature in the mesosphere and lower thermosphere derived from SABER data. J. Geophys. Res. Atmos., 122, 37543785, https://doi.org/10.1002/2016JD025573.

    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 14241427, https://doi.org/10.1126/science.aah4156.

    • Search Google Scholar
    • Export Citation
  • Park, M., and Coauthors, 2017: Variability of stratospheric reactive nitrogen and ozone related to the QBO. J. Geophys. Res. Atmos., 122, 10 10310 118, https://doi.org/10.1002/2017JD027061.

    • Search Google Scholar
    • Export Citation
  • Pramitha, M., K. K. Kumar, M. V. Ratnam, M. Praveen, and S. V. B. Rao, 2021a: Stratospheric quasi biennial oscillation modulations of migrating diurnal tide in the mesosphere and lower thermosphere over the low and equatorial latitudes. J. Geophys. Res. Space Phys., 126, e2020JA028970, https://doi.org/10.1029/2020JA028970.

    • Search Google Scholar
    • Export Citation
  • Pramitha, M., K. K. Kumar, M. V. Ratnam, M. Praveen, and S. V. B. Rao, 2021b: Disrupted stratospheric QBO signatures in the diurnal tides over the low-latitude MLT region. Geophys. Res. Lett., 48, e2021GL093022, https://doi.org/10.1029/2021GL093022.

    • Search Google Scholar
    • Export Citation
  • Prusa, J. M., P. K. Smolarkiewicz, and R. R. Garcia, 1996: Propagation and breaking at high altitudes of waves excited by tropospheric forcing. J. Atmos. Sci., 53, 21862216, https://doi.org/10.1175/1520-0469(1996)053<2186:PABAHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, https://doi.org/10.1029/2008JD010013.

    • Search Google Scholar
    • Export Citation
  • Riggin, D. M., and R. S. Lieberman, 2013: Variability of the diurnal tide in the equatorial MLT. J. Atmos. Sol.-Terr. Phys., 102, 198206, https://doi.org/10.1016/j.jastp.2013.05.011.

    • Search Google Scholar
    • Export Citation
  • Russell, J. M., III, M. G. Mlynczak, and L. L. Gordley, 1994: Overview of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment for the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission. Proc. SPIE, 2266, 406415, https://doi.org/10.1117/12.187579.

    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., M. Fujiwara, and X. Zhang, 2013: Interpretation of the vertical structure and seasonal variation of the diurnal migrating tide from the troposphere to the lower mesosphere. J. Atmos. Sol.-Terr. Phys., 105–106, 6680, https://doi.org/10.1016/j.jastp.2013.07.010.

    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., M. Fujiwara, and M. Shiotani, 2018: Representation of solar tides in the stratosphere and lower mesosphere in state-of-the-art reanalyses and in satellite observations. Atmos. Chem. Phys., 18, 14371456, https://doi.org/10.5194/acp-18-1437-2018.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982a: Sampling theory for asynoptic satellite observations. Part I: Space–time spectra, resolution, and aliasing. J. Atmos. Sci., 39, 25772600, https://doi.org/10.1175/1520-0469(1982)039<2577:STFASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982b: Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 26012614, https://doi.org/10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., P. S. Argall, T. G. Shepherd, and J. N. Koshyk, 2007: Model-measurement comparison of mesospheric temperature inversions, and a simple theory for their occurrence. Geophys. Res. Lett., 34, L23806, https://doi.org/10.1029/2007GL030627.

    • Search Google Scholar
    • Export Citation
  • Siebert, M., 1961: Atmospheric tides. Adv. Geophys., 7, 105187, https://doi.org/10.1016/S0065-2687(08)60362-3.

  • Silber, I., C. Price, C. Schmidt, S. Wüst, M. Bittner, and E. Pecora, 2017: First ground-based observations of mesopause temperatures above the eastern-Mediterranean—Part I: Multi-day oscillations and tides. J. Atmos. Sol.-Terr. Phys., 155, 95103, https://doi.org/10.1016/j.jastp.2016.08.014.

    • Search Google Scholar
    • Export Citation
  • Singh, D., and S. Gurubaran, 2017: Variability of diurnal tide in the MLT region over Tirunelveli (8.7°N), India: Consistency between ground and space-based observations. J. Geophys. Res. Atmos., 122, 26962713, https://doi.org/10.1002/2016JD025910.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., and Coauthors, 2013: Satellite observations of ozone in the upper mesosphere. J. Geophys. Res. Atmos., 118, 58035821, https://doi.org/10.1002/jgrd.50445.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., R. R. Garcia, A. C. Moss, and N. J. Mitchell, 2017: The semiannual oscillation of the tropical zonal wind in the middle atmosphere derived from satellite geopotential height retrievals. J. Atmos. Sci., 74, 24132425, https://doi.org/10.1175/JAS-D-17-0067.1.

    • Search Google Scholar
    • Export Citation
  • Tian, W., M. P. Chipperfield, L. J. Gray, and J. M. Zawodny, 2006: Quasi-biennial oscillation and tracer distributions in a coupled chemistry-climate model. J. Geophys. Res., 111, D20301, https://doi.org/10.1029/2005JD006871.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., 2007: Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res., 112, A06305, https://doi.org/10.1029/2006JA011845.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., 2013: Compressible f-plane solutions to body forces, heatings, and coolings, and application to the primary and secondary gravity waves generated by a deep convective plume. J. Geophys. Res. Space Phys., 118, 23772397, https://doi.org/10.1002/jgra.50163.

    • Search Google Scholar
    • Export Citation
  • Vadas, S. L., H.-L. Liu, and R. S. Lieberman, 2014: Numerical modeling of the global changes to the thermosphere and ionosphere from the dissipation of gravity waves from deep convection. J. Geophys. Res. Space Phys., 119, 77627793, https://doi.org/10.1002/2014JA020280.

    • Search Google Scholar
    • Export Citation
  • Vial, F., and H. Teitelbaum, 1986: The role of tides in the thermodynamics of the lower thermosphere for solstice conditions. J. Atmos. Terr. Phys., 48, 11751184, https://doi.org/10.1016/0021-9169(86)90037-1.

    • Search Google Scholar
    • Export Citation
  • Vincent, R. A., S. Kovalam, D. C. Fritts, and J. R. Isler, 1998: Long-term MF radar observations of solar tides in the low-latitude mesosphere: Interannual variability and comparisons with the GSWM. J. Geophys. Res., 103, 86678683, https://doi.org/10.1029/98JD00482.

    • Search Google Scholar
    • Export Citation
  • Wehrbein, W. M., and C. B. Leovy, 1982: An accurate radiative heating and cooling algorithm for use in a dynamical model of the middle atmosphere. J. Atmos. Sci., 39, 15321544, https://doi.org/10.1175/1520-0469(1982)039<1532:AARHAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Coauthors, 2009: Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res., 114, D13107, https://doi.org/10.1029/2008JD011298.

    • Search Google Scholar
    • Export Citation
  • Yasui, R., K. Sato, and Y. Miyoshi, 2018: The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part II: The in situ generation of gravity waves. J. Atmos. Sci., 75, 36353651, https://doi.org/10.1175/JAS-D-17-0337.1.

    • Search Google Scholar
    • Export Citation
  • Yee, J.-H., E. H. Rodberg, R. J. Harvey, D. Y. Kusnierkiewicz, W. P. Knopf, P. Grunberger, D. G. Grant, and G. E. Cameron, 2003: Advanced technology and mission operations concepts employed on NASA’s TIMED mission. Proc. SPIE, 5088, 4352, https://doi.org/10.1117/12.499870.

    • Search Google Scholar
    • Export Citation
  • Yiğit, E., and A. S. Medvedev, 2017: Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth’s thermosphere. J. Geophys. Res. Space Phys., 122, 48464864, https://doi.org/10.1002/2017JA024089.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2021: The role of chemical processes in the quasi-biennial oscillation (QBO) signal in stratospheric ozone. Atmos. Environ., 244, 117906, https://doi.org/10.1016/j.atmosenv.2020.117906.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. M. Forbes, M. E. Hagan, J. M. Russell III, S. E. Palo, C. J. Mertens, and M. G. Mlynczak, 2006: Monthly tidal temperatures 20–120 km from TIMED/SABER. J. Geophys. Res., 111, A10S08, https://doi.org/10.1029/2005JA011504.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 306 306 38
Full Text Views 180 180 12
PDF Downloads 230 230 23

On the Structure and Variability of the Migrating Diurnal Temperature Tide Observed by SABER

Rolando R. GarciaaNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rolando R. Garcia in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6963-4592
Restricted access

Abstract

Temperature observations made by the SABER infrared radiometer from January 2002 through December 2021 are used to study the structure and variability of the migrating diurnal temperature tide in the middle atmosphere (∼17–105 km). In the lower stratosphere, and in the mesosphere and lower thermosphere (MLT), tidal structure is dominated by the gravest latitudinally symmetric mode, with a smaller contribution from the first antisymmetric mode; in the middle and upper stratosphere, vertically nonpropagating modes are prominent. Consistent with previous work, low-frequency variability is mainly semiannual, with maxima at the equinoxes. Quasi-biennial variability is also present and evident in low-passed time series. There are robust relationships between the semiannual and quasi-biennial variability of the tide and the semiannual and quasi-biennial tropical zonal wind oscillations, respectively, which persist throughout the 20-yr dataset. While the physical mechanisms responsible for these relationships cannot be ascertained from the observations, the present results should be useful for hypothesis testing with numerical models. It is also found that the diurnal tide breaks due to convective instability in the MLT. This is reflected in its mean vertical structure, which grows as expected for a nondissipating wave below ∼85 km, but ceases to grow at higher altitudes. Direct confirmation that dissipation is due to breaking is obtained from the potential temperature field, which shows frequent instances of reversed vertical gradient, particularly at the equinoxes. Breaking of the diurnal tide has a major impact on the zonal-mean temperature and zonal wind structure of the MLT at the equinoxes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rolando R. Garcia, rgarcia@ucar.edu

Abstract

Temperature observations made by the SABER infrared radiometer from January 2002 through December 2021 are used to study the structure and variability of the migrating diurnal temperature tide in the middle atmosphere (∼17–105 km). In the lower stratosphere, and in the mesosphere and lower thermosphere (MLT), tidal structure is dominated by the gravest latitudinally symmetric mode, with a smaller contribution from the first antisymmetric mode; in the middle and upper stratosphere, vertically nonpropagating modes are prominent. Consistent with previous work, low-frequency variability is mainly semiannual, with maxima at the equinoxes. Quasi-biennial variability is also present and evident in low-passed time series. There are robust relationships between the semiannual and quasi-biennial variability of the tide and the semiannual and quasi-biennial tropical zonal wind oscillations, respectively, which persist throughout the 20-yr dataset. While the physical mechanisms responsible for these relationships cannot be ascertained from the observations, the present results should be useful for hypothesis testing with numerical models. It is also found that the diurnal tide breaks due to convective instability in the MLT. This is reflected in its mean vertical structure, which grows as expected for a nondissipating wave below ∼85 km, but ceases to grow at higher altitudes. Direct confirmation that dissipation is due to breaking is obtained from the potential temperature field, which shows frequent instances of reversed vertical gradient, particularly at the equinoxes. Breaking of the diurnal tide has a major impact on the zonal-mean temperature and zonal wind structure of the MLT at the equinoxes.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Rolando R. Garcia, rgarcia@ucar.edu
Save