Sea-State-Dependent Sea Spray and Air–Sea Heat Fluxes in Tropical Cyclones: A New Parameterization for Fully Coupled Atmosphere–Wave–Ocean Models

Benjamin W. Barr aUniversity of Washington, Seattle, Washington

Search for other papers by Benjamin W. Barr in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-6983-3519
,
Shuyi S. Chen aUniversity of Washington, Seattle, Washington

Search for other papers by Shuyi S. Chen in
Current site
Google Scholar
PubMed
Close
, and
Christopher W. Fairall bPhysical Sciences Laboratory, National Oceanic and Atmospheric Association, Boulder, Colorado

Search for other papers by Christopher W. Fairall in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Air–sea exchange in high winds is one of the most important but poorly represented processes in tropical cyclone (TC) prediction models. Effects of sea spray on air–sea heat fluxes in TCs are particularly difficult to model due to complex sea states and lack of observations in extreme wind and wave conditions. This study introduces a new sea-state-dependent air–sea heat flux parameterization with spray, which is developed using the Unified Wave Interface–Coupled Model (UWIN-CM). Impacts of spray on air–sea heat fluxes are investigated across a wide range of winds, waves, and atmospheric and ocean conditions in five TCs of various sizes and intensities. Spray generation with variable size distribution is explicitly represented by surface wave properties such as wave dissipation, significant wave height, and dominant phase speed, which may be uncorrelated with local winds. The sea-state-dependent spray mass flux is substantially different than a wind-dependent flux, especially when wave shoaling occurs with enhanced wave dissipation near the coast during TC landfall. Spray increases the air–sea enthalpy flux near the radius of maximum wind (RMW) by approximately 5%–20% when mean 10-m wind speed at the RMW reaches 40–50 m s−1. These values can be amplified significantly by coastal wave shoaling. Spray latent heat fluxes may be dampened in the eyewall due to high saturation ratio, and they consistently produce a moistening and cooling effect outside the eyewall. Spray strongly modifies the total sensible heat flux and can cause either a warming or cooling effect at the RMW depending on eyewall saturation ratio.

Significance Statement

Fluxes of heat and moisture from the ocean to the atmosphere are important for hurricane intensification, but the impact of sea spray generated by breaking waves on these fluxes is not well understood. We develop a new model for heat fluxes with spray that accounts for how waves control spray, and we apply this model to a set of five simulated hurricanes to better understand the broad range of ways that spray impacts heat fluxes in high wind conditions. We find that spray significantly affects heat fluxes in hurricanes and that impacts are strongly controlled by waves, which are not always correlated to winds. This research improves our understanding of how spray affects heat fluxes in hurricanes and provides a foundation for future studies investigating sea spray and its impacts on high-impact weather systems.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Barr, bwbarr@uw.edu

Abstract

Air–sea exchange in high winds is one of the most important but poorly represented processes in tropical cyclone (TC) prediction models. Effects of sea spray on air–sea heat fluxes in TCs are particularly difficult to model due to complex sea states and lack of observations in extreme wind and wave conditions. This study introduces a new sea-state-dependent air–sea heat flux parameterization with spray, which is developed using the Unified Wave Interface–Coupled Model (UWIN-CM). Impacts of spray on air–sea heat fluxes are investigated across a wide range of winds, waves, and atmospheric and ocean conditions in five TCs of various sizes and intensities. Spray generation with variable size distribution is explicitly represented by surface wave properties such as wave dissipation, significant wave height, and dominant phase speed, which may be uncorrelated with local winds. The sea-state-dependent spray mass flux is substantially different than a wind-dependent flux, especially when wave shoaling occurs with enhanced wave dissipation near the coast during TC landfall. Spray increases the air–sea enthalpy flux near the radius of maximum wind (RMW) by approximately 5%–20% when mean 10-m wind speed at the RMW reaches 40–50 m s−1. These values can be amplified significantly by coastal wave shoaling. Spray latent heat fluxes may be dampened in the eyewall due to high saturation ratio, and they consistently produce a moistening and cooling effect outside the eyewall. Spray strongly modifies the total sensible heat flux and can cause either a warming or cooling effect at the RMW depending on eyewall saturation ratio.

Significance Statement

Fluxes of heat and moisture from the ocean to the atmosphere are important for hurricane intensification, but the impact of sea spray generated by breaking waves on these fluxes is not well understood. We develop a new model for heat fluxes with spray that accounts for how waves control spray, and we apply this model to a set of five simulated hurricanes to better understand the broad range of ways that spray impacts heat fluxes in high wind conditions. We find that spray significantly affects heat fluxes in hurricanes and that impacts are strongly controlled by waves, which are not always correlated to winds. This research improves our understanding of how spray affects heat fluxes in hurricanes and provides a foundation for future studies investigating sea spray and its impacts on high-impact weather systems.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Benjamin Barr, bwbarr@uw.edu
Save
  • Andreas, E. L., 1989: Thermal and size evolution of sea spray droplets. CRREL Rep. 89-11, 38 pp., https://apps.dtic.mil/sti/pdfs/ADA210484.pdf.

  • Andreas, E. L., 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B, 481497, https://doi.org/10.3402/tellusb.v42i5.15241.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11 42911 441, https://doi.org/10.1029/92JC00876.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, https://doi.org/10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., 2005: Approximation formulas for the microphysical properties of saline droplets. Atmos. Res., 75, 323345, https://doi.org/10.1016/j.atmosres.2005.02.001.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and J. DeCosmo, 1999: Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362.

  • Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, https://doi.org/10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352, https://doi.org/10.1007/BF00712389.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., L. Mahrt, and D. Vickers, 2015: An improved bulk air–sea surface flux algorithm, including spray-mediated transfer. Quart. J. Roy. Meteor. Soc., 141, 642654, https://doi.org/10.1002/qj.2424.

    • Search Google Scholar
    • Export Citation
  • Avila, L. A., S. R. Stewart, R. Berg, and A. B. Hagen, 2020: National Hurricane Center tropical cyclone report: Hurricane Dorian. NHC Tech. Rep. AL052019, 74 pp., https://www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf.

  • Banner, M. L., X. Barthelemy, F. Fedele, M. Allis, A. Benetazzo, F. Dias, and W. L. Peirson, 2014: Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett., 112, 114502, https://doi.org/10.1103/PhysRevLett.112.114502.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., J. M. Wilczak, J.-K. Choi, and L. H. Kantha, 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, https://doi.org/10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, https://doi.org/10.1175/MWR-D-11-00007.1.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., J.-W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381, https://doi.org/10.1007/s10546-011-9617-1.

    • Search Google Scholar
    • Export Citation
  • Blomquist, B. W., and Coauthors, 2017: Wind speed and sea state dependencies of air-sea gas transfer: Results from the High Wind Speed Gas Exchange Study (HiWinGS). J. Geophys. Res. Oceans, 122, 80348062, https://doi.org/10.1002/2017JC013181.

    • Search Google Scholar
    • Export Citation
  • Bruch, W., J. Piazzola, H. Branger, A. M. J. van Eijk, C. Luneau, D. Bourras, and G. Tedeschi, 2021: Sea-spray-generation dependence on wind and wave combinations: A laboratory study. Bound.-Layer Meteor., 180, 477505, https://doi.org/10.1007/s10546-021-00636-y.

    • Search Google Scholar
    • Export Citation
  • Brumer, S. E., C. J. Zappa, I. M. Brooks, H. Tamura, S. M. Brown, B. W. Blomquist, C. W. Fairall, and A. Cifuentes-Lorenzen, 2017: Whitecap coverage dependence on wind and wave statistics as observed during SO GasEX and HiWinGS. J. Phys. Oceanogr., 47, 22112235, https://doi.org/10.1175/JPO-D-17-0005.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., 2020: National Hurricane Center forecast verification report: 2019 hurricane season. National Hurricane Center Rep., 75 pp.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and M. Curcic, 2016: Ocean surface waves in Hurricane Ike (2008) and Superstorm Sandy (2012): Coupled model predictions and observations. Ocean Modell., 103, 161176, https://doi.org/10.1016/j.ocemod.2015.08.005.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, and E. J. Walsh, 2007: The CBLAST-Hurricane Program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, https://doi.org/10.1175/BAMS-88-3-311.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., W. Zhao, M. A. Donelan, and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, https://doi.org/10.1175/JAS-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., J. Fei, X. Huang, and J. Zheng, 2012: Effects of sea spray evaporation and dissipative heating on intensity and structure of tropical cyclone. Adv. Atmos. Sci., 29, 810822, https://doi.org/10.1007/s00376-012-1082-3.

    • Search Google Scholar
    • Export Citation
  • Deike, L., L. Lenain, and W. K. Melville, 2017: Air entrainment by breaking waves. Geophys. Res. Lett., 44, 37793787, https://doi.org/10.1002/2017GL072883.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, https://doi.org/10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115, https://doi.org/10.1175/JAS3889.1.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363372, https://doi.org/10.1007/BF00240838.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. B. Edson, and M. A. Miller, 1990: Heat fluxes, whitecaps, and sea spray. Current Theory, G. L. Geernaert, Ed., Vol. I, Surface Waves and Fluxes, Kluwer, 173–208.

  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, https://doi.org/10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Figa-Saldaña, J., J. J. W. Wilson, E. Attema, R. Gelsthorpe, M. R. Drinkwater, and A. Stoffelen, 2002: The Advanced Scatterometer (ASCAT) on the Meteorological Operational (MetOp) platform: A follow on for European wind scatterometers. Can. J. Remote Sens., 28, 404412, https://doi.org/10.5589/m02-035.

    • Search Google Scholar
    • Export Citation
  • Garg, N., E. Y. K. Ng, and S. Narasimalu, 2018: The effects of sea spray and atmosphere–wave coupling on air–sea exchange during a tropical cyclone. Atmos. Chem. Phys., 18, 60016021, https://doi.org/10.5194/acp-18-6001-2018.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • He, H., Q. Wu, D. Chen, J. Sun, C. Liang, W. Jin, and Y. Xu, 2018: Effects of surface waves and sea spray on air–sea fluxes during the passage of Typhoon Hagupit. Acta Oceanol. Sin., 37 (5), 17, https://doi.org/10.1007/s13131-018-1208-2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J., C. W. Fairall, and J.-W. Bao, 1999: Modelling the interaction between the atmospheric boundary layer and evaporating sea spray droplets. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 363–409.

  • Lee, C.-Y., and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, https://doi.org/10.1175/MWR-D-13-00122.1.

    • Search Google Scholar
    • Export Citation
  • Lin, K.-L., S.-C. Yang, and S. S. Chen, 2018: Reducing TC position uncertainty in ensemble data assimilation and prediction system: A case study of Typhoon Fanapi (2010). Wea. Forecasting, 33, 561582, https://doi.org/10.1175/WAF-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., 1987: An investigation of aerosol generation in the marine planetary boundary layer. M.S. thesis, Dept. of Meteorology, Pennsylvania State University, 142 pp.

  • Monahan, E. C., and I. O’Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 20942099, https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monahan, E. C., D. E. Spiel, and K. L. Davidson, 1986: A model of marine aerosol generation via whitecaps and wave disruption. Oceanic Whitecaps, E. C. Monahan and G. Niocaill, Eds., Springer, 167–174.

  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009: A sea state–dependent spume generation function. J. Phys. Oceanogr., 39, 23632372, https://doi.org/10.1175/2009JPO4113.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014a: Impact of sea spray on air–sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr., 44, 28172834, https://doi.org/10.1175/JPO-D-13-0245.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014b: Impact of sea spray on air–sea fluxes. Part II: Feedback effects. J. Phys. Oceanogr., 44, 28352853, https://doi.org/10.1175/JPO-D-13-0246.1.

    • Search Google Scholar
    • Export Citation
  • Ortiz-Suslow, D. G., B. K. Haus, S. Mehta, and N. J. M. Laxague, 2016: Sea spray generation in very high winds. J. Atmos. Sci., 73, 39753995, https://doi.org/10.1175/JAS-D-15-0249.1.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857861, https://doi.org/10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, T., and D. H. Richter, 2019: Sea spray and its feedback effects: Assessing bulk algorithms of air–sea heat fluxes via direct numerical simulations. J. Phys. Oceanogr., 49, 14031421, https://doi.org/10.1175/JPO-D-18-0193.1.

    • Search Google Scholar
    • Export Citation
  • Prakash, K. R., V. Pant, and T. Nigam, 2019: Effects of the sea surface roughness and sea spray-induced flux parameterization on the simulations of a tropical cyclone. J. Geophys. Res. Atmos., 124, 14 03714 058, https://doi.org/10.1029/2018JD029760.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Remote Sensing Systems, 2017: MWIR optimum interpolated SST dataset, version 5.0. PO.DAAC, accessed 11 February 2021, https://doi.org/10.5067/GHMWI-4FR05.

  • Richter, D. H., and D. P. Stern, 2014: Evidence of spray-mediated air-sea enthalpy flux within tropical cyclones. Geophys. Res. Lett., 41, 29973003, https://doi.org/10.1002/2014GL059746.

    • Search Google Scholar
    • Export Citation
  • Richter, D. H., and F. Veron, 2016: Ocean spray: An outsized influence on weather and climate. Phys. Today, 69, 3439, https://doi.org/10.1063/PT.3.3363.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., 1983: The asymmetric boundary layer flow under a translating hurricane. J. Atmos. Sci., 40, 19841998, https://doi.org/10.1175/1520-0469(1983)040<1984:TABLFU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., J. A. Zhang, M. Pinsky, and A. Khain, 2012: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci., 69, 35013514, https://doi.org/10.1175/JAS-D-11-0281.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

  • Smith, S. D., 1990: Influence of droplet evaporation on HEXOS humidity and temperature profiles. Modeling the fate and influence of marine spray, University of Connecticut Marine Sciences Institute Whitecap Rep. 7, 171–174.

  • Sroka, S., and K. A. Emanuel, 2021a: A review of parameterizations for enthalpy and momentum fluxes from sea spray in tropical cyclones. J. Phys. Oceanogr., 51, 30533069, https://doi.org/10.1175/JPO-D-21-0023.1.

    • Search Google Scholar
    • Export Citation
  • Sroka, S., and K. A. Emanuel, 2021b: Sensitivity of sea-surface enthalpy and momentum fluxes to sea spray microphysics . J. Geophys. Res. Oceans, 127, e2021JC017774, https://doi.org/10.1029/2021JC017774.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2015: Field measurements of surface and near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 45, 943965, https://doi.org/10.1175/JPO-D-14-0133.1.

    • Search Google Scholar
    • Export Citation
  • Tamizi, A., and I. R. Young, 2020: The spatial distribution of ocean waves in tropical cyclones. J. Phys. Oceanogr., 50, 21232139, https://doi.org/10.1175/JPO-D-20-0020.1.

    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y., A. Kandaurov, O. Ermakova, D. Kozlov, D. Sergeev, and S. Zilitinkevich, 2017: Bag-breakup fragmentation as the dominant mechanism of sea-spray production in high winds. Sci. Rep., 7, 1614, https://doi.org/10.1038/s41598-017-01673-9.

    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y., A. Kandaurov, O. Ermakova, D. Kozlov, D. Sergeev, and S. Zilitinkevich, 2018a: The “bag breakup” spume droplet generation mechanism at high winds. Part I: Spray generation function. J. Phys. Oceanogr., 48, 21672188, https://doi.org/10.1175/JPO-D-17-0104.1.

    • Search Google Scholar
    • Export Citation
  • Troitskaya, Y., O. Druzhinin, D. Kozlov, and S. Zilitinkevich, 2018b: The “bag breakup” spume droplet generation mechanism at high winds. Part II: Contribution to momentum and enthalpy transfer. J. Phys. Oceanogr., 48, 21892207, https://doi.org/10.1175/JPO-D-17-0105.1.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116, https://doi.org/10.1175/1520-0426(2003)020<0099:VORSSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., P. G. Black, J. F. Franklin, M. Goodberlet, J. Carswell, and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped-frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, https://doi.org/10.1175/MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Veron, F., 2015: Ocean spray. Annu. Rev. Fluid Mech., 47, 507538, https://doi.org/10.1146/annurev-fluid-010814-014651.

  • Veron, F., C. Hopkins, E. L. Harrison, and J. A. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett., 39, L16602, https://doi.org/10.1029/2012GL052603.

    • Search Google Scholar
    • Export Citation
  • Wallcraft, A. J., E. J. Metzger, and S. N. Carroll, 2009: Software design description for the Hybrid Coordinate Ocean Model (HYCOM) version 2.2. Naval Research Laboratory Tech. Rep. NRL/MR/732009-9166, 155 pp., https://apps.dtic.mil/sti/citations/ADA494779.

  • Wang, Y., J. D. Kepert, and G. J. Holland, 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500, https://doi.org/10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, https://doi.org/10.1002/qj.49709640708.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, https://doi.org/10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, J., J. J. Murray, and R. J. Lai, 1984: Production and distributions of sea spray. J. Geophys. Res., 89, 81638169, https://doi.org/10.1029/JC089iC05p08163.

    • Search Google Scholar
    • Export Citation
  • Xu, X., J. J. Voermans, H. Ma, C. Guan, and A. V. Babanin, 2021a: A wind-wave-dependent sea spray volume flux model based on field experiments. J. Mar. Sci. Eng., 9, 1168, https://doi.org/10.3390/jmse9111168.

    • Search Google Scholar
    • Export Citation
  • Xu, X., J. J. Voermans, Q. Liu, I.-J. Moon, C. Guan, and A. V. Babanin, 2021b: Impacts of the wave-dependent sea spray parameterizations on air–sea–wave coupled modeling under an idealized tropical cyclone. J. Mar. Sci. Eng., 9, 1390, https://doi.org/10.3390/jmse9121390.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier Ocean Engineering Book Series, Vol. 2, Elsevier, 288 pp.

  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, https://doi.org/10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., and L. Oey, 2019: An observational analysis of ocean surface waves in tropical cyclones in the western North Pacific Ocean. J. Geophys. Res. Oceans, 124, 184195, https://doi.org/10.1029/2018JC014517.

    • Search Google Scholar
    • Export Citation
  • Zhang, L., X. Zhang, P. C. Chu, C. Guan, H. Fu, G. Chao, G. Han, and W. Li, 2017: Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002). J. Geophys. Res. Oceans, 122, 77837802, https://doi.org/10.1002/2016JC012592.

    • Search Google Scholar
    • Export Citation
  • Zhao, D., Y. Toba, K. Sugioka, and S. Komori, 2006: New Sea spray generation function for spume droplets. J. Geophys. Res., 111, C02007, https://doi.org/10.1029/2005JC002960.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 895 614 28
Full Text Views 460 380 19
PDF Downloads 513 402 19