Wind and Turbulence Effects on Raindrop Fall Speed

Firat Y. Testik aSchool of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, Texas
bDepartment of Mechanical Engineering, University of Texas at San Antonio, San Antonio, Texas

Search for other papers by Firat Y. Testik in
Current site
Google Scholar
PubMed
Close
and
Abdullah Bolek aSchool of Civil and Environmental Engineering and Construction Management, University of Texas at San Antonio, San Antonio, Texas

Search for other papers by Abdullah Bolek in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Wind and turbulence effects on raindrop fall speeds were elucidated using field observations over a 2-yr time period. Motivations for this study include the recent observations of raindrop fall speed deviations from the terminal fall speed predictions (Vt) based upon laboratory studies and the utilizations of these predictions in various important meteorological and hydrological applications. Fall speed (Vf) and other characteristics of raindrops were observed using a high-speed optical disdrometer (HOD), and various rainfall and wind characteristics were observed using a 3D ultrasonic anemometer, a laser-type disdrometer, and rain gauges. A total of 26 951 raindrops were observed during 17 different rainfall events, and of these observed raindrops, 18.5% had a subterminal fall speed (i.e., 0.85VtVf) and 9.5% had a superterminal fall speed (i.e., 1.15VtVf). Our observations showed that distributions of sub- and superterminal raindrops in the raindrop size spectrum are distinct, and different physical processes are responsible for the occurrence of each. Vertical wind speed, wind shear, and turbulence were identified as the important factors, the latter two being the dominant ones, for the observed fall speed deviations. Turbulence and wind shear had competing effects on raindrop fall. Raindrops of different sizes showed different responses to turbulence, indicating multiscale interactions between raindrop fall and turbulence. With increasing turbulence levels, while the raindrops in the smaller end of the size spectrum showed fall speed enhancements, those in the larger end of the size spectrum showed fall speed reductions. The effect of wind shear was to enhance the raindrop fall speed toward a superterminal fall.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Firat Y. Testik, firat.testik@utsa.edu

Abstract

Wind and turbulence effects on raindrop fall speeds were elucidated using field observations over a 2-yr time period. Motivations for this study include the recent observations of raindrop fall speed deviations from the terminal fall speed predictions (Vt) based upon laboratory studies and the utilizations of these predictions in various important meteorological and hydrological applications. Fall speed (Vf) and other characteristics of raindrops were observed using a high-speed optical disdrometer (HOD), and various rainfall and wind characteristics were observed using a 3D ultrasonic anemometer, a laser-type disdrometer, and rain gauges. A total of 26 951 raindrops were observed during 17 different rainfall events, and of these observed raindrops, 18.5% had a subterminal fall speed (i.e., 0.85VtVf) and 9.5% had a superterminal fall speed (i.e., 1.15VtVf). Our observations showed that distributions of sub- and superterminal raindrops in the raindrop size spectrum are distinct, and different physical processes are responsible for the occurrence of each. Vertical wind speed, wind shear, and turbulence were identified as the important factors, the latter two being the dominant ones, for the observed fall speed deviations. Turbulence and wind shear had competing effects on raindrop fall. Raindrops of different sizes showed different responses to turbulence, indicating multiscale interactions between raindrop fall and turbulence. With increasing turbulence levels, while the raindrops in the smaller end of the size spectrum showed fall speed enhancements, those in the larger end of the size spectrum showed fall speed reductions. The effect of wind shear was to enhance the raindrop fall speed toward a superterminal fall.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Firat Y. Testik, firat.testik@utsa.edu
Save
  • Albertson, J. D., M. B. Parlange, G. Kiely, and W. E. Eichinger, 1997: The average dissipation rate of turbulent kinetic energy in the neutral and unstable atmospheric surface layer. J. Geophys. Res., 102, 13 42313 432, https://doi.org/10.1029/96JD03346.

    • Search Google Scholar
    • Export Citation
  • Aliseda, A., A. Cartellier, F. Hainaux, and J. C. Lasheras, 2002: Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 468, 77105, https://doi.org/10.1017/S0022112002001593.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., R. C. Srivastava, and R. S. Sekhon, 1973: Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11, 135, https://doi.org/10.1029/RG011i001p00001.

    • Search Google Scholar
    • Export Citation
  • Ayyalasomayajula, S., A. Gylfason, L. R. Collins, E. Bodenschatz, and Z. Warhaft, 2006: Lagrangian measurements of inertial particle accelerations in grid generated wind tunnel turbulence. Phys. Rev. Lett., 97, 144507, https://doi.org/10.1103/PhysRevLett.97.144507.

    • Search Google Scholar
    • Export Citation
  • Bagchi, P., and S. Balachandar, 2002: Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids, 14, 27192737, https://doi.org/10.1063/1.1487378.

    • Search Google Scholar
    • Export Citation
  • Banerjee, S., R. Krahl, F. Durst, and C. Zenger, 2007: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul., 8, N32, https://doi.org/10.1080/14685240701506896.

    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, and R. K. Newsom, 2018: Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign. Atmos. Meas. Tech., 11, 42914308, https://doi.org/10.5194/amt-11-4291-2018.

    • Search Google Scholar
    • Export Citation
  • Bodini, N., J. K. Lundquist, R. Krishnamurthy, M. Pekour, L. K. Berg, and A. Choukulkar, 2019: Spatial and temporal variability of turbulence dissipation rate in complex terrain. Atmos. Chem. Phys., 19, 43674382, https://doi.org/10.5194/acp-19-4367-2019.

    • Search Google Scholar
    • Export Citation
  • Bolek, A., and F. Y. Testik, 2022: Rainfall microphysics influenced by strong wind during a tornadic storm. J. Hydrometeor., 23, 733746, https://doi.org/10.1175/JHM-D-21-0004.1.

    • Search Google Scholar
    • Export Citation
  • Bringi, V., M. Thurai, and D. Baumgardner, 2018: Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech., 11, 13771384, https://doi.org/10.5194/amt-11-1377-2018.

    • Search Google Scholar
    • Export Citation
  • Brugger, P., G. G. Katul, F. De Roo, K. Kröniger, E. Rotenberg, S. Rohatyn, and M. Mauder, 2018: Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows. Phys. Rev. Fluids, 3, 054608, https://doi.org/10.1103/PhysRevFluids.3.054608.

    • Search Google Scholar
    • Export Citation
  • Chamecki, M., and N. L. Dias, 2004: The local isotropy hypothesis and the turbulent kinetic energy dissipation rate in the atmospheric surface layer. Quart. J. Roy. Meteor. Soc., 130, 27332752, https://doi.org/10.1256/qj.03.155.

    • Search Google Scholar
    • Export Citation
  • Champagne, F. H., C. A. Friehe, J. C. LaRue, and J. C. Wynagaard, 1997: Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J. Atmos. Sci., 34, 515–530, https://doi.org/10.1175/1520-0469(1977)034<0515:FMFETA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, C., F. Porcù, S. Das, and A. Bracci, 2022: An investigation on super- and sub-terminal drops in two different rain categories and climate regimes. Remote Sens., 14, 2515, https://doi.org/10.3390/rs14112515.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Z. Liu, Y. Chen, and H. Wang, 2020: Analytical expression for predicting the reduced settling velocity of small particles in turbulence. Environ. Fluid Mech., 20, 905922, https://doi.org/10.1007/s10652-019-09731-8.

    • Search Google Scholar
    • Export Citation
  • Darbieu, C., and Coauthors, 2015: Turbulence vertical structure of the boundary layer during the afternoon transition. Atmos. Chem. Phys., 15, 10 07110 086, https://doi.org/10.5194/acp-15-10071-2015.

    • Search Google Scholar
    • Export Citation
  • Das, S. K., S. Simon, Y. K. Kolte, U. V. M. Krishna, S. M. Deshpande, and A. Hazra, 2020: Investigation of raindrops fall velocity during different monsoon seasons over the Western Ghats, India. Earth Space Sci., 7, e2019EA000956, https://doi.org/10.1029/2019EA000956.

    • Search Google Scholar
    • Export Citation
  • Davidson, P. A., 2015: Turbulence: An Introduction for Scientists and Engineers. 2nd ed. Oxford University Press, 630 pp.

  • Foken, T., and C. J. Napo, 2008: Micrometeorology. Springer, 306 pp.

  • Freedman, D., and P. Diaconis, 1981: On the histogram as a density estimator: L2 theory. Z. Wahrscheinlichkeitstheorie Verw. Geb., 57, 453476, https://doi.org/10.1007/BF01025868.

    • Search Google Scholar
    • Export Citation
  • Fung, J. C. H., 1993: Gravitational settling of particles and bubbles in homogeneous turbulence. J. Geophys. Res., 98, 20 28720 297, https://doi.org/10.1029/93JC01845.

    • Search Google Scholar
    • Export Citation
  • Fung, J. C. H., 1998: Effect of nonlinear drag on the settling velocity of particles in homogeneous isotropic turbulence. J. Geophys. Res., 103, 27 90527 917, https://doi.org/10.1029/98JC02822.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and S. E. Yuter, 2014: Observed influence of riming, temperature, and turbulence on the fallspeed of solid precipitation. Geophys. Res. Lett., 41, 65156522, https://doi.org/10.1002/2014GL061016.

    • Search Google Scholar
    • Export Citation
  • Good, G. H., P. J. Ireland, G. P. Bewley, E. Bodenschatz, L. R. Collins, and Z. Warhaft, 2014: Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech., 759, R3, https://doi.org/10.1017/jfm.2014.602.

    • Search Google Scholar
    • Export Citation
  • Gunn, R., and G. D. Kinzer, 1949: The terminal velocity of fall for water droplets in stagnant air. J. Meteor., 6, 243248, https://doi.org/10.1175/1520-0469(1949)006<0243:TTVOFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, C. W., G. G. Katul, M. Froidevaux, V. Simeonov, and M. B. Parlange, 2013: Are atmospheric surface layer flows ergodic? Geophys. Res. Lett., 40, 33423346, https://doi.org/10.1002/grl.50642.

    • Search Google Scholar
    • Export Citation
  • Højstrup, J., 1981: A simple model for the adjustment of velocity spectra in unstable conditions downstream of an abrupt change in roughness and heat flux. Bound.-Layer Meteor., 21, 341356, https://doi.org/10.1007/BF00119278.

    • Search Google Scholar
    • Export Citation
  • Hölzer, A., and M. Sommerfeld, 2009: Lattice Boltzmann simulations to determine drag, lift and torque acting on non-spherical particles. Comput. Fluids, 38, 572589, https://doi.org/10.1016/j.compfluid.2008.06.001.

    • Search Google Scholar
    • Export Citation
  • Ireland, P. J., A. D. Bragg, and L. R. Collins, 2016: The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech., 796, 659711, https://doi.org/10.1017/jfm.2016.227.

    • Search Google Scholar
    • Export Citation
  • Jabbari, A., A. Rouhi, and L. Boegman, 2016: Evaluation of the structure function method to compute turbulent dissipation within boundary layers using numerical simulations. J. Geophys. Res. Oceans, 121, 58885897, https://doi.org/10.1002/2015JC011608.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 289 pp.

  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Coté, 1972: Spectral characteristics of surface‐layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589, https://doi.org/10.1002/qj.49709841707.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., M. B. Parlange, and C. R. Chu, 1994: Intermittency, local isotropy, and non‐Gaussian statistics in atmospheric surface layer turbulence. Phys. Fluids, 6, 24802492, https://doi.org/10.1063/1.868196.

    • Search Google Scholar
    • Export Citation
  • Katul, G. G., M. B. Parlange, J. D. Albertson, and C. R. Chu, 1995: Local isotropy and anisotropy in the sheared and heated atmospheric surface layer. Bound.-Layer Meteor., 72, 123148, https://doi.org/10.1007/BF00712392.

    • Search Google Scholar
    • Export Citation
  • Kawanisi, K., and R. Shiozaki, 2008: Turbulent effects on the settling velocity of suspended sediment. J. Hydraul. Eng., 134, 261266, https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(261).

    • Search Google Scholar
    • Export Citation
  • Kurose, R., and S. Komori, 1999: Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech., 384, 183206, https://doi.org/10.1017/S0022112099004164.

    • Search Google Scholar
    • Export Citation
  • Larsen, M. L., A. B. Kostinski, and A. R. Jameson, 2014: Further evidence for superterminal raindrops. Geophys. Res. Lett., 41, 69146918, https://doi.org/10.1002/2014GL061397.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., J. Mann, and L. Kristensen, 1994: How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Oceanic Technol., 11, 661673, https://doi.org/10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H., R. Yuan, J. Mei, J. Sun, Q. Liu, and Y. Wang, 2017: Scale properties of anisotropic and isotropic turbulence in the urban surface layer. Bound.-Layer Meteor., 165, 277294, https://doi.org/10.1007/s10546-017-0272-z.

    • Search Google Scholar
    • Export Citation
  • Lovejoy, S., and D. Schertzer, 2008: Turbulence, raindrops and the l1/2 number density law. New J. Phys., 10, 075017, https://doi.org/10.1088/1367-2630/10/7/075017.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., 1979: Computational modeling of turbulent flows. Adv. Appl. Mech., 18, 123176, https://doi.org/10.1016/S0065-2156(08)70266-7.

    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., 1987: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech., 174, 441465, https://doi.org/10.1017/S0022112087000193.

    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., and S. Corrsin, 1986: Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J. Atmos. Sci., 43, 11121134, https://doi.org/10.1175/1520-0469(1986)043<1112:GSOAPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Montero-Martínez, G., and F. García-García, 2016: On the behaviour of raindrop fall speed due to wind. Quart. J. Roy. Meteor. Soc., 142, 20132020, https://doi.org/10.1002/qj.2794.

    • Search Google Scholar
    • Export Citation
  • Montero-Martínez, G., A. B. Kostinski, R. A. Shaw, and F. García-García, 2009: Do all raindrops fall at terminal speed? Geophys. Res. Lett., 36, L11818, https://doi.org/10.1029/2008GL037111.

    • Search Google Scholar
    • Export Citation
  • Muñoz-Esparza, D., R. D. Sharman, and J. K. Lundquist, 2018: Turbulence dissipation rate in the atmospheric boundary layer: Observations and WRF mesoscale modeling during the XPIA field campaign. Mon. Wea. Rev., 146, 351371, https://doi.org/10.1175/MWR-D-17-0186.1.

    • Search Google Scholar
    • Export Citation
  • Murray, S. P., 1970: Settling velocities and vertical diffusion of particles in turbulent water. J. Geophys. Res., 75, 16471654, https://doi.org/10.1029/JC075i009p01647.

    • Search Google Scholar
    • Export Citation
  • Nemes, A., T. Dasari, J. Hong, M. Guala, and F. Coletti, 2017: Snowflakes in the atmospheric surface layer: Observation of particle-turbulence dynamics. J. Fluid Mech., 814, 592613, https://doi.org/10.1017/jfm.2017.13.

    • Search Google Scholar
    • Export Citation
  • Newsom, R., R. Calhoun, D. Ligon, and J. Allwine, 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor., 127, 111130, https://doi.org/10.1007/s10546-007-9243-0.

    • Search Google Scholar
    • Export Citation
  • Nielsen, P., 1984: On the motion of suspended sand particles. J. Geophys. Res., 89, 616626, https://doi.org/10.1029/JC089iC01p00616.

  • Nielsen, P., 1993: Turbulence effects on the settling of suspended particles. J. Sediment. Res., 63, 835838, https://doi.org/10.1306/D4267C1C-2B26-11D7-8648000102C1865D.

    • Search Google Scholar
    • Export Citation
  • Nieuwstadt, F. T. M., and P. G. Duynkerke, 1996: Turbulence in the atmospheric boundary layer. Atmos. Res., 40, 111142, https://doi.org/10.1016/0169-8095(95)00034-8.

    • Search Google Scholar
    • Export Citation
  • Niu, S., X. Jia, J. Sang, X. Liu, C. Lu, and Y. Liu, 2010: Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteor. Climatol., 49, 632645, https://doi.org/10.1175/2009JAMC2208.1.

    • Search Google Scholar
    • Export Citation
  • Oncley, S. P., C. A. Friehe, J. C. Larue, J. A. Businger, E. C. Itsweire, and S. S. Chang, 1996: Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J. Atmos. Sci., 53, 10291044, https://doi.org/10.1175/1520-0469(1996)053<1029:SLFPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., D. Larko, R. Lipschutz, G. Stone, E. F. Bradley, A. J. Bowen, and J. Højstrup, 1982: Spectra of velocity components over complex terrain. Quart. J. Roy. Meteor. Soc., 108, 215230, https://doi.org/10.1002/qj.49710845513.

    • Search Google Scholar
    • Export Citation
  • Pei, B., F. Y. Testik, and M. Gebremichael, 2014: Impacts of raindrop fall velocity and axis ratio errors on dual-polarization radar rainfall estimation. J. Hydrometeor., 15, 18491861, https://doi.org/10.1175/JHM-D-13-0201.1.

    • Search Google Scholar
    • Export Citation
  • Piper, M., and J. K. Lundquist, 2004: Surface layer turbulence measurements during a frontal passage. J. Atmos. Sci., 61, 17681780, https://doi.org/10.1175/1520-0469(2004)061<1768:SLTMDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rahman, K., and F. Y. Testik, 2020: Shapes and fall speeds of freezing and frozen raindrops. J. Hydrometeor., 21, 13111331, https://doi.org/10.1175/JHM-D-19-0204.1.

    • Search Google Scholar
    • Export Citation
  • Ren, W., J. Reutzsch, and B. Weigand, 2020: Direct numerical simulation of water droplets in turbulent flow. Fluids, 5, 158, https://doi.org/10.3390/fluids5030158.

    • Search Google Scholar
    • Export Citation
  • Rosa, B., and J. Pozorski, 2017: Impact of subgrid fluid turbulence on inertial particles subject to gravity. J. Turbul., 18, 634652, https://doi.org/10.1080/14685248.2017.1317099.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. A., and Coauthors, 2020: Cloud–aerosol–turbulence interactions: Science priorities and concepts for a large-scale laboratory facility. Bull. Amer. Meteor. Soc., 101, E1026E1035, https://doi.org/10.1175/BAMS-D-20-0009.1.

    • Search Google Scholar
    • Export Citation
  • Squires, K. D., and J. K. Eaton, 1991: Preferential concentration of particles by turbulence. Phys. Fluids, A3, 11691178, https://doi.org/10.1063/1.858045.

    • Search Google Scholar
    • Export Citation
  • Stout, J. E., S. P. Arya, and E. L. Genikhovich, 1995: The effect of nonlinear drag on the motion and settling velocity of heavy particles. J. Atmos. Sci., 52, 38363848, https://doi.org/10.1175/1520-0469(1995)052<3836:TEONDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sugioka, K.-I., and S. Komori, 2007: Drag and lift forces acting on a spherical water droplet in homogeneous linear shear air flow. J. Fluid Mech., 570, 155175, https://doi.org/10.1017/S0022112006003065.

    • Search Google Scholar
    • Export Citation
  • Suomi, I., and T. Vihma, 2018: Wind gust measurement techniques—From traditional anemometry to new possibilities. Sensors, 18, 1300, https://doi.org/10.3390/s18041300.

    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and A. P. Barros, 2007: Toward elucidating the microstructure of warm rainfall: A survey. Rev. Geophys., 45, RG2003, https://doi.org/10.1029/2005RG000182.

    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., and M. Gebremichael, 2010: Rainfall: State of the Science. Amer. Geophys. Union, 287 pp.

  • Testik, F. Y., and M. K. Rahman, 2016: High-speed optical disdrometer for rainfall microphysical observations. J. Atmos. Oceanic Technol., 33, 231243, https://doi.org/10.1175/JTECH-D-15-0098.1.

    • Search Google Scholar
    • Export Citation
  • Testik, F. Y., A. P. Barros, and L. F. Bliven, 2006: Field observations of multimode raindrop oscillations by high-speed imaging. J. Atmos. Sci., 63, 26632668, https://doi.org/10.1175/JAS3773.1.

    • Search Google Scholar
    • Export Citation
  • Teunissen, H. W., 1980: Structure of mean winds and turbulence in the planetary boundary layer over rural terrain. Bound.-Layer Meteor., 19, 187221, https://doi.org/10.1007/BF00117220.

    • Search Google Scholar
    • Export Citation
  • Thurai, M., V. N. Bringi, W. A. Petersen, and P. N. Gatlin, 2013: Drop shapes and fall speeds in rain: Two contrasting examples. J. Appl. Meteor. Climatol., 52, 25672581, https://doi.org/10.1175/JAMC-D-12-085.1.

    • Search Google Scholar
    • Export Citation
  • Tieleman, H. W., 1992a: Universality of velocity spectra. 11th Australasian Fluid Mechanics Conf., Hobart, Australia, University of Tasmania, 965–968, https://www.afms.org.au/proceedings/11/Tieleman_1992.pdf.

  • Tieleman, H. W., 1992b: Wind characteristics in the surface layer over heterogeneous terrain. J. Wind Eng. Ind. Aerodyn., 41, 329340, https://doi.org/10.1016/0167-6105(92)90427-C.

    • Search Google Scholar
    • Export Citation
  • Tom, J., and A. D. Bragg, 2019: Multiscale preferential sweeping of particles settling in turbulence. J. Fluid Mech., 871, 244270, https://doi.org/10.1017/jfm.2019.337.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, https://doi.org/10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, L.-P., and M. R. Maxey, 1993: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech., 256, 2768, https://doi.org/10.1017/S0022112093002708.

    • Search Google Scholar
    • Export Citation
  • Wilczak, J. M., S. P. Oncley, and S. A. Stage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127150, https://doi.org/10.1023/A:1018966204465.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., and O. R. Coté, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190201, https://doi.org/10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yang, T. S., and S. S. Shy, 2003: The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys. Fluids, 15, 868880, https://doi.org/10.1063/1.1557526.

    • Search Google Scholar
    • Export Citation
  • Yu, B., A. Gan Chowdhury, and F. J. Masters, 2008: Hurricane wind power spectra, cospectra, and integral length scales. Bound.-Layer Meteor., 129, 411430, https://doi.org/10.1007/s10546-008-9316-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 628 628 18
Full Text Views 202 202 6
PDF Downloads 243 243 3