Evaluation of the Ice Particle Simulation of Microphysics Schemes with Aircraft Measurements of a Stratiform Cloud in North China

Shaofeng Hua aCMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing, China

Search for other papers by Shaofeng Hua in
Current site
Google Scholar
PubMed
Close
,
Baojun Chen aCMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing, China

Search for other papers by Baojun Chen in
Current site
Google Scholar
PubMed
Close
,
Yubao Liu bPrecision Regional Earth Modeling and Information Center, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yubao Liu in
Current site
Google Scholar
PubMed
Close
,
Gang Chen cNanjing Joint Institute for Atmospheric Sciences, Nanjing, China

Search for other papers by Gang Chen in
Current site
Google Scholar
PubMed
Close
,
Yang Yang dWeather Modification Office of Hebei Province, Shijiazhuang, China

Search for other papers by Yang Yang in
Current site
Google Scholar
PubMed
Close
,
Xiaobo Dong dWeather Modification Office of Hebei Province, Shijiazhuang, China

Search for other papers by Xiaobo Dong in
Current site
Google Scholar
PubMed
Close
,
Zhen Zhao eInstitute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Zhen Zhao in
Current site
Google Scholar
PubMed
Close
,
Yang Gao aCMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing, China

Search for other papers by Yang Gao in
Current site
Google Scholar
PubMed
Close
,
Xu Zhou aCMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing, China

Search for other papers by Xu Zhou in
Current site
Google Scholar
PubMed
Close
,
Rong Zhang aCMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing, China

Search for other papers by Rong Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jing Duan aCMA Key Laboratory of Cloud-Precipitation Physics and Weather Modification (CPML), CMA Weather Modification Centre (WMC), Beijing, China

Search for other papers by Jing Duan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Airborne microphysical measurements of a frontal precipitation event in North China were used to evaluate five microphysics schemes for predicting the bulk properties of ice particles. They are the Morrison and Thompson schemes, which use predetermined categories, the 1-ice- and 2-ice-category configurations of the Predicted Particle Properties (P3) scheme and the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL) scheme, which model the evolution of particle properties, and the spectral bin fast version (SBM_fast) microphysics scheme within the Weather Research and Forecasting (WRF) Model. WRF simulations with these schemes successfully reproduced the observed temperature and the liquid and total water content profiles at corresponding times and locations, allowing for a credible comparison of the predictions of particle properties with the aircraft measurements. The simulated results with the 1-ice-category P3 scheme are in good agreement with the observations for all the particle properties we examined. The 2-ice-category P3 scheme overestimates the spectrum width and underestimates the number concentration, which can be alleviated by reducing the ice collection efficiency. The simulation with the SBM_fast scheme deviates from the observed ice particle size distributions since the mass–diameter relationship of snow-sized particles adopted in this scheme may not be applicable to this stratiform cloud case.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Baojun Chen, chenbj@cma.gov.cn; Yubao Liu, ybliu@nuist.edu.cn

Abstract

Airborne microphysical measurements of a frontal precipitation event in North China were used to evaluate five microphysics schemes for predicting the bulk properties of ice particles. They are the Morrison and Thompson schemes, which use predetermined categories, the 1-ice- and 2-ice-category configurations of the Predicted Particle Properties (P3) scheme and the Ice-Spheroids Habit Model with Aspect-Ratio Evolution (ISHMAEL) scheme, which model the evolution of particle properties, and the spectral bin fast version (SBM_fast) microphysics scheme within the Weather Research and Forecasting (WRF) Model. WRF simulations with these schemes successfully reproduced the observed temperature and the liquid and total water content profiles at corresponding times and locations, allowing for a credible comparison of the predictions of particle properties with the aircraft measurements. The simulated results with the 1-ice-category P3 scheme are in good agreement with the observations for all the particle properties we examined. The 2-ice-category P3 scheme overestimates the spectrum width and underestimates the number concentration, which can be alleviated by reducing the ice collection efficiency. The simulation with the SBM_fast scheme deviates from the observed ice particle size distributions since the mass–diameter relationship of snow-sized particles adopted in this scheme may not be applicable to this stratiform cloud case.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Baojun Chen, chenbj@cma.gov.cn; Yubao Liu, ybliu@nuist.edu.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7183 MB)
Save
  • Andrejczuk, M., J. M. Reisner, B. Henson, M. K. Dubey, and C. A. Jeffery, 2008: The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res., 113, D19204, https://doi.org/10.1029/2007JD009445.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, https://doi.org/10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cotton, R. J., and Coauthors, 2013: The effective density of small ice particles obtained from in situ aircraft observations of mid-latitude cirrus. Quart. J. Roy. Meteor. Soc., 139, 19231934, https://doi.org/10.1002/qj.2058.

    • Search Google Scholar
    • Export Citation
  • Cox, G. P., 1988: Modelling precipitation in frontal rainbands. Quart. J. Roy. Meteor. Soc., 114, 115127, https://doi.org/10.1002/qj.49711447906.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, J., L. R. Leung, Z. Li, H. Morrison, H. Chen, Y. Zhou, Y. Qian, and Y. Wang, 2012: Aerosol impacts on clouds and precipitation in eastern China: Results from bin and bulk microphysics. J. Geophys. Res., 117, D00K36, https://doi.org/10.1029/2011JD016537.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., R. J. Hogan, P. R. A. Brown, A. J. Illingworth, T. W. Choularton, and R. J. Cotton, 2005: Parametrization of ice-particle size distributions for mid-latitude stratiform cloud. Quart. J. Roy. Meteor. Soc., 131, 19972017, https://doi.org/10.1256/qj.04.134.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, C. Gourbeyre, and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys., 14, 11 36711 392, https://doi.org/10.5194/acp-14-11367-2014.

    • Search Google Scholar
    • Export Citation
  • Garvert, M. F., C. P. Woods, B. A. Colle, C. F. Mass, P. V. Hobbs, M. T. Stoelinga, and J. B. Wolfe, 2005: The 13–14 December 2001 IMPROVE-2 event. Part II: Comparisons of MM5 model simulations of clouds and precipitation with observations. J. Atmos. Sci., 62, 35203534, https://doi.org/10.1175/JAS3551.1.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., P. Dziekan, and H. Pawlowska, 2018: Lagrangian condensation microphysics with Twomey CCN activation. Geosci. Model Dev., 11, 103120, https://doi.org/10.5194/gmd-11-103-2018.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., H. Morrison, S.-I. Shima, G. C. Abade, P. Dziekan, and H. Pawlowska, 2019: Modeling of cloud microphysics: Can we do better? Bull. Amer. Meteor. Soc., 100, 655672, https://doi.org/10.1175/BAMS-D-18-0005.1.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., K. Sulia, and H. Morrison, 2013: A method for adaptive habit prediction in bulk microphysical models. Part I: Theoretical development. J. Atmos. Sci., 70, 349364, https://doi.org/10.1175/JAS-D-12-040.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, C. Schmitt, C. Twohy, and M. R. Poellot, 2004: Effective ice particle densities derived from aircraft data. J. Atmos. Sci., 61, 9821003, https://doi.org/10.1175/1520-0469(2004)061<0982:EIPDDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., C. Schmitt, A. Bansemer, and C. H. Twohy, 2010: Improved representation of ice particle masses based on observations in natural clouds. J. Atmos. Sci., 67, 33033318, https://doi.org/10.1175/2010JAS3507.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hou, T., H. Lei, Z. Hu, J. Yang, and X. Li, 2020: Simulations of microphysics and precipitation in a stratiform cloud case over northern China: Comparison of two microphysics schemes. Adv. Atmos. Sci., 37, 117129, https://doi.org/10.1007/s00376-019-8257-0.

    • Search Google Scholar
    • Export Citation
  • Hua, S., X. Xu, and B. Chen, 2020: Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study. J. Geophys. Res. Atmos., 125, e2019JD031731, https://doi.org/10.1029/2019JD031731.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2021: Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Evaluation of simulations using bulk microphysical schemes. Atmos. Chem. Phys., 21, 69196944, https://doi.org/10.5194/acp-21-6919-2021.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and Coauthors, 2022: Microphysical processes producing high ice water contents (HIWCs) in tropical convective clouds during the HAIC-HIWC field campaign: Dominant role of secondary ice production. Atmos. Chem. Phys., 22, 23652384, https://doi.org/10.5194/acp-22-2365-2022.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, H. Morrison, and J. A. Milbrandt, 2017: Predicting ice shape evolution in a bulk microphysics model. J. Atmos. Sci., 74, 20812104, https://doi.org/10.1175/JAS-D-16-0350.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018a: Impacts of ice particle shape and density evolution on the distribution of orographic precipitation. J. Atmos. Sci., 75, 30953114, https://doi.org/10.1175/JAS-D-17-0400.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., J. Y. Harrington, and H. Morrison, 2018b: Microphysical characteristics of squall-line stratiform precipitation and transition zones simulated using an ice particle property-evolving model. Mon. Wea. Rev., 146, 723743, https://doi.org/10.1175/MWR-D-17-0215.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karrer, M., A. Seifert, D. Ori, and S. Kneifel, 2021: Improving the representation of aggregation in a two-moment microphysical scheme with statistics of multi-frequency Doppler radar observations. Atmos. Chem. Phys., 21, 17 13317 166, https://doi.org/10.5194/acp-21-17133-2021.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and I. Sednev, 1996: Simulation of precipitation formation in the eastern Mediterranean coastal zone using a spectral microphysics cloud ensemble model. Atmos. Res., 43, 77110, https://doi.org/10.1016/S0169-8095(96)00005-1.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., L. R. Leung, B. Lynn, and S. Ghan, 2009: Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. J. Geophys. Res., 114, D22203, https://doi.org/10.1029/2009JD011902.

    • Search Google Scholar
    • Export Citation
  • Khain, A. P., and Coauthors, 2015: Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys., 53, 247322, https://doi.org/10.1002/2014RG000468.

    • Search Google Scholar
    • Export Citation
  • King, W. D., D. A. Parkin, and R. J. Handsworth, 1978: A hot-wire liquid water device having fully calculable response characteristics. J. Appl. Meteor., 17, 18091813, https://doi.org/10.1175/1520-0450(1978)017<1809:AHWLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., 2007: Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations. J. Atmos. Oceanic Technol., 24, 376389, https://doi.org/10.1175/JTECH1980.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., J. W. Strapp, G. A. Isaac, and A. N. Nevzorov, 1998: The Nevzorov airborne hot-wire LWC–TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 14951510, https://doi.org/10.1175/1520-0426(1998)015<1495:TNAHWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., 2011: Effects of ice particles shattering on the 2D-S probe. Atmos. Meas. Tech., 4, 13611381, https://doi.org/10.5194/amt-4-1361-2011.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., S. Woods, and H. Morrison, 2015: The microphysics of ice and precipitation development in tropical cumulus clouds. J. Atmos. Sci., 72, 24292445, https://doi.org/10.1175/JAS-D-14-0274.1.

    • Search Google Scholar
    • Export Citation
  • Li, X., W.-K. Tao, A. P. Khain, J. Simpson, and D. E. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci., 66, 2240, https://doi.org/10.1175/2008JAS2647.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2009: The 4–5 December 2001 IMPROVE-2 event: Observed microphysics and comparisons with the Weather Research and Forecasting Model. Mon. Wea. Rev., 137, 13721392, https://doi.org/10.1175/2008MWR2653.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139, 10131035, https://doi.org/10.1175/2010MWR3293.1.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, https://doi.org/10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., D. W. Johnson, and A. Spice, 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, https://doi.org/10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and H. Morrison, 2016: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part III: Introduction of multiple free categories. J. Atmos. Sci., 73, 975995, https://doi.org/10.1175/JAS-D-15-0204.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1988: Evolution of snow-size spectra in cyclonic storms. Part I: Snow growth by vapor deposition and aggregation. J. Atmos. Sci., 45, 34313451, https://doi.org/10.1175/1520-0469(1988)045<3431:EOSSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., and A. J. Heymsfield, 2005: Refinements in the treatment of ice particle terminal velocities, highlighting aggregates. J. Atmos. Sci., 62, 16371644, https://doi.org/10.1175/JAS3413.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., and B. A. Colle, 2012: Comparisons of single- and double-moment microphysics schemes in the simulation of a synoptic-scale snowfall event. Mon. Wea. Rev., 140, 29823002, https://doi.org/10.1175/MWR-D-11-00292.1.

    • Search Google Scholar
    • Export Citation
  • Molthan, A. L., W. A. Petersen, S. W. Nesbitt, and D. Hudak, 2010: Evaluating the snow crystal size distribution and density assumptions within a single-moment microphysics scheme. Mon. Wea. Rev., 138, 42544267, https://doi.org/10.1175/2010MWR3485.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, https://doi.org/10.1175/JAS3980.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and W. W. Grabowski, 2008: A novel approach for representing ice microphysics in models: Description and tests using a kinematic framework. J. Atmos. Sci., 65, 15281548, https://doi.org/10.1175/2007JAS2491.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 11031130, https://doi.org/10.1175/2010MWR3433.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., M. Witte, G. H. Bryan, J. Y. Harrington, and Z. J. Lebo, 2018: Broadening of modeled cloud droplet spectra using bin microphysics in an Eulerian spatial domain. J. Atmos. Sci., 75, 40054030, https://doi.org/10.1175/JAS-D-18-0055.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and Coauthors, 2020: Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689.

    • Search Google Scholar
    • Export Citation
  • Naeger, A. R., B. A. Colle, and A. Molthan, 2017: Evaluation of cloud microphysical schemes for a warm frontal snowband during the GPM Cold Season Precipitation Experiment (GCPEx). Mon. Wea. Rev., 145, 46274650, https://doi.org/10.1175/MWR-D-17-0081.1.

    • Search Google Scholar
    • Export Citation
  • Naeger, A. R., B. A. Colle, N. Zhou, and A. Molthan, 2020: Evaluating warm and cold rain processes in cloud microphysical schemes using OLYMPEX field measurements. Mon. Wea. Rev., 148, 21632190, https://doi.org/10.1175/MWR-D-19-0092.1.

    • Search Google Scholar
    • Export Citation
  • Riechelmann, T., Y. Noh, and S. Raasch, 2012: A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys., 14, 065008, https://doi.org/10.1088/1367-2630/14/6/065008.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud-droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694703, https://doi.org/10.1175/2007JAMC1664.1.

    • Search Google Scholar
    • Export Citation
  • Schmitt, C. G., and A. J. Heymsfield, 2010: The dimensional characteristics of ice crystal aggregates from fractal geometry. J. Atmos. Sci., 67, 16051616, https://doi.org/10.1175/2009JAS3187.1.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteor. Atmos. Phys., 92, 4566, https://doi.org/10.1007/s00703-005-0112-4.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., A. Khain, A. Pokrovsky, and K. D. Beheng, 2006: A comparison of spectral bin and two-moment bulk mixed-phase cloud microphysics. Atmos. Res., 80, 4666, https://doi.org/10.1016/j.atmosres.2005.06.009.

    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Search Google Scholar
    • Export Citation
  • Shima, S., Y. Sato, A. Hashimoto, and R. Misumi, 2020: Predicting the morphology of ice particles in deep convection using the super-droplet method: Development and evaluation of SCALE-SDM 0.2.5-2.2.0, -2.2.1, and -2.2.2. Geosci. Model Dev., 13, 41074157, https://doi.org/10.5194/gmd-13-4107-2020.

    • Search Google Scholar
    • Export Citation
  • Shipway, B. J., and A. A. Hill, 2012: Diagnosis of systematic differences between multiple parametrizations of warm rain microphysics using a kinematic framework. Quart. J. Roy. Meteor. Soc., 138, 21962211, https://doi.org/10.1002/qj.1913.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for Weather Research and Forecasting applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, https://doi.org/10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • vanZanten, M. C., and Coauthors, 2011: Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO. J. Adv. Model. Earth Syst., 3, M06001, https://doi.org/10.1029/2011MS000056.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., J. Fan, R. Zhang, L. R. Leung, and C. Franklin, 2013: Improving bulk microphysics parameterizations in simulations of aerosol effects. J. Geophys. Res. Atmos., 118, 53615379, https://doi.org/10.1002/jgrd.50432.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., R. C. Ball, P. R. Field, and A. J. Heymsfield, 2004: Theory of growth by differential sedimentation, with application to snowflake formation. Phys. Rev., 70E, 021403, https://doi.org/10.1103/PhysRevE.70.021403.

    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2017: Idealized simulations of a squall line from the MC3E field campaign applying three bin microphysics schemes: Dynamic and thermodynamic structure. Mon. Wea. Rev., 145, 47894812, https://doi.org/10.1175/MWR-D-16-0385.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 492 397 14
Full Text Views 254 204 11
PDF Downloads 310 238 10