Diurnal MCSs Precede the Genesis of Tropical Cyclone Mora (2017): The Role of Convectively Forced Gravity Waves

Xingchao Chen aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania
bCenter for Advanced Data Assimilation and Predictability Techniques, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Xingchao Chen in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9844-7836
,
L. Ruby Leung cAtmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by L. Ruby Leung in
Current site
Google Scholar
PubMed
Close
,
Zhe Feng cAtmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Zhe Feng in
Current site
Google Scholar
PubMed
Close
, and
Qiu Yang cAtmospheric Sciences and Global Change, Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Qiu Yang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A novel high-resolution regional reanalysis is used to investigate the mesoscale processes that preceded the formation of Tropical Cyclone (TC) Mora (2017). Both satellite observations and the regional reanalysis show early morning mesoscale convective systems (MCSs) persistently initiated and organized in the downshear quadrant of the preexisting tropical disturbance a few days prior to the genesis of TC Mora. The diurnal MCSs gradually enhanced the meso-α-scale vortex near the center of the preexisting tropical disturbance through vortex stretching, providing a vorticity-rich and moist environment for the following burst of deep convection and enhancement of the meso-β-scale vortex. The regional reanalysis shows that the gravity waves that radiated from afternoon convection over the northern coast of the Bay of Bengal might play an important role in modulating the diurnal cycle of pregenesis MCSs. The diurnal convectively forced gravity waves increased the tropospheric stability, reduced the column saturation fraction, and suppressed deep convection within the preexisting tropical disturbance from noon to evening. A similar quasi-diurnal cycle of organized deep convection prior to TC genesis has also been observed over other basins. However, modeling studies are needed to conclusively demonstrate the relationships between the gravity waves and pregenesis diurnal MCSs. Also, whether diurnal gravity waves play a similar role in modulating the pregenesis deep convection in other TCs is worth future investigations.

Significance Statement

Tropical cyclogenesis is a process by which a less organized weather system in the tropics develops into a tropical cyclone (TC). Observations indicate that thunderstorms occurring prior to the tropical cyclogenesis often show a distinct quasi-diurnal cycle, while the related physical mechanisms are still unclear. In this study, we used a novel high-resolution dataset to investigate the diurnal thunderstorms occurring prior to the genesis of TC Mora (2017). We find that the pregenesis diurnal thunderstorms played a crucial role in spinning up the circulation of the atmosphere and provided a favorable environment for the rapid formation of Mora. It is likely that gravity waves emitted by afternoon thunderstorms over the inland region were responsible for regulating the diurnal variation of pregenesis thunderstorms over the ocean.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu

Abstract

A novel high-resolution regional reanalysis is used to investigate the mesoscale processes that preceded the formation of Tropical Cyclone (TC) Mora (2017). Both satellite observations and the regional reanalysis show early morning mesoscale convective systems (MCSs) persistently initiated and organized in the downshear quadrant of the preexisting tropical disturbance a few days prior to the genesis of TC Mora. The diurnal MCSs gradually enhanced the meso-α-scale vortex near the center of the preexisting tropical disturbance through vortex stretching, providing a vorticity-rich and moist environment for the following burst of deep convection and enhancement of the meso-β-scale vortex. The regional reanalysis shows that the gravity waves that radiated from afternoon convection over the northern coast of the Bay of Bengal might play an important role in modulating the diurnal cycle of pregenesis MCSs. The diurnal convectively forced gravity waves increased the tropospheric stability, reduced the column saturation fraction, and suppressed deep convection within the preexisting tropical disturbance from noon to evening. A similar quasi-diurnal cycle of organized deep convection prior to TC genesis has also been observed over other basins. However, modeling studies are needed to conclusively demonstrate the relationships between the gravity waves and pregenesis diurnal MCSs. Also, whether diurnal gravity waves play a similar role in modulating the pregenesis deep convection in other TCs is worth future investigations.

Significance Statement

Tropical cyclogenesis is a process by which a less organized weather system in the tropics develops into a tropical cyclone (TC). Observations indicate that thunderstorms occurring prior to the tropical cyclogenesis often show a distinct quasi-diurnal cycle, while the related physical mechanisms are still unclear. In this study, we used a novel high-resolution dataset to investigate the diurnal thunderstorms occurring prior to the genesis of TC Mora (2017). We find that the pregenesis diurnal thunderstorms played a crucial role in spinning up the circulation of the atmosphere and provided a favorable environment for the rapid formation of Mora. It is likely that gravity waves emitted by afternoon thunderstorms over the inland region were responsible for regulating the diurnal variation of pregenesis thunderstorms over the ocean.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xingchao Chen, xzc55@psu.edu
Save
  • Ahmed, F., and C. Schumacher, 2015: Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett., 42, 10 45310 462, https://doi.org/10.1002/2015GL066957.

    • Search Google Scholar
    • Export Citation
  • Ahmed, F., and J. D. Neelin, 2018: Reverse engineering the tropical precipitation–buoyancy relationship. J. Atmos. Sci., 75, 15871608, https://doi.org/10.1175/JAS-D-17-0333.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2019: Mesoscale processes during the genesis of Hurricane Karl (2010). J. Atmos. Sci., 76, 22352255, https://doi.org/10.1175/JAS-D-18-0161.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, K. J. Mallen, and P. D. Reasor, 2010: Simulation and interpretation of the genesis of Tropical Storm Gert (2005) as part of the NASA Tropical Cloud Systems and Processes Experiment. J. Atmos. Sci., 67, 9991025, https://doi.org/10.1175/2009JAS3140.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., F. Zhang, X. Chen, and L. R. Leung, 2020: Potential impacts of assimilating all-sky satellite infrared radiances on convection-permitting analysis and prediction of tropical convection. Mon. Wea. Rev., 148, 32033224, https://doi.org/10.1175/MWR-D-19-0343.1.

    • Search Google Scholar
    • Export Citation
  • Chan, M.-Y., X. Chen, and L. R. Leung, 2022: A high-resolution tropical mesoscale convective system reanalysis (TMeCSR). J. Adv. Model. Earth Syst., 14, e2021MS002948, https://doi.org/10.1029/2021MS002948.

    • Search Google Scholar
    • Export Citation
  • Chang, M., C.-H. Ho, M.-S. Park, J. Kim, and M.-H. Ahn, 2017: Multiday evolution of convective bursts during western North Pacific tropical cyclone development and nondevelopment using geostationary satellite measurements. J. Geophys. Res. Atmos., 122, 16351649, https://doi.org/10.1002/2016JD025535.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., R. G. Nystrom, C. A. Davis, and C. M. Zarzycki, 2021a: Dynamical structures of cross-domain forecast error covariance of a simulated tropical cyclone in a convection-permitting coupled atmosphere–ocean model. Mon. Wea. Rev., 149, 4163, https://doi.org/10.1175/MWR-D-20-0116.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, F. Song, and Q. Yang, 2021b: Mesoscale convective systems dominate the energetics of the South Asian summer monsoon onset. Geophys. Res. Lett., 48, e2021GL094873, https://doi.org/10.1029/2021GL094873.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, and F. Song, 2022a: Crucial role of mesoscale convective systems in the vertical mass, water, and energy transports of the South Asian summer monsoon. J. Climate, 35, 91108, https://doi.org/10.1175/JCLI-D-21-0124.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., L. R. Leung, Z. Feng, and Q. Yang, 2022b: Precipitation-moisture coupling over tropical oceans: Sequential roles of shallow, deep, and mesoscale convective systems. Geophys. Res. Lett., 49, e2022GL097836, https://doi.org/10.1029/2022GL097836.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and D. A. Ahijevych, 2012: Mesoscale structural evolution of three tropical weather systems observed during PREDICT. J. Atmos. Sci., 69, 12841305, https://doi.org/10.1175/JAS-D-11-0225.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

  • Emmanuel, R., M. Deshpande, M. K. Ganadhi, and S. T. Ingle, 2021: Genesis of severe Cyclonic Storm Mora in the presence of tropical waves over the north Indian Ocean. Quart. J. Roy. Meteor. Soc., 147, 30173031, https://doi.org/10.1002/qj.4113.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gjorgjievska, S., and D. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 30653082, https://doi.org/10.5194/acp-14-3065-2014.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and Coauthors, 2019: From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys., 19, 30973124, https://doi.org/10.5194/acp-19-3097-2019.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, https://doi.org/10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 half hourly 4km global (60S-60N) merged IR V1. GES DISC, accessed 1 April 2020, https://doi.org/10.5067/P4HZB9N27EKU.

  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Majumdar, S. J., and R. D. Torn, 2014: Probabilistic verification of global and mesoscale ensemble forecasts of tropical cyclogenesis. Wea. Forecasting, 29, 11811198, https://doi.org/10.1175/WAF-D-14-00028.1.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part III: Diurnal gravity waves and nocturnal convection offshore. Mon. Wea. Rev., 131, 830844, https://doi.org/10.1175/1520-0493(2003)131<0830:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., R. A. Houze, Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, https://doi.org/10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and F. Zhang, 2014: Diurnal radiation cycle impact on the pregenesis environment of Hurricane Karl (2010). J. Atmos. Sci., 71, 12411259, https://doi.org/10.1175/JAS-D-13-0116.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Distribution of helicity, CAPE, and shear in tropical cyclones. J. Atmos. Sci., 67, 274284, https://doi.org/10.1175/2009JAS3090.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, https://doi.org/10.1175/JAS3291.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., P. Dodge, D. Vollaro, K. L. Corbosiero, and F. Marks, Jr., 2006: Mesoscale aspects of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 63, 341354, https://doi.org/10.1175/JAS3591.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., R. K. Smith, and S. V. Nguyen, 2010: Sensitivity of tropical‐cyclone models to the surface drag coefficient. Quart. J. Roy. Meteor. Soc., 136, 19451953, https://doi.org/10.1002/qj.702.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, https://doi.org/10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2007: For tropical cyclogenesis. Aust. Meteor. Mag., 56, 241266.

  • Randall, D. A., Harshvardhan, and D. A. Dazlich, 1991: Diurnal variability of the hydrologic cycle in a general circulation model. J. Atmos. Sci., 48, 4062, https://doi.org/10.1175/1520-0469(1991)048<0040:DVOTHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, https://doi.org/10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2000: Thermodynamic control of tropical rainfall. Quart. J. Roy. Meteor. Soc., 126, 889898, https://doi.org/10.1002/qj.49712656406.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and H. Jiang, 1990: A theory for long-lived mesoscale convective systems. J. Atmos. Sci., 47, 30673077, https://doi.org/10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, https://doi.org/10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1997: Scale interactions during the formation of Typhoon Irving. Mon. Wea. Rev., 125, 13771396, https://doi.org/10.1175/1520-0493(1997)125<1377:SIDTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., and X. Chen, 2020: Island rainfall enhancement in the Maritime Continent. Geophys. Res. Lett., 47, e2019GL086545, https://doi.org/10.1029/2019GL086545.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., X. Chen, and F. Zhang, 2020a: Convectively forced diurnal gravity waves in the Maritime Continent. J. Atmos. Sci., 77, 11191136, https://doi.org/10.1175/JAS-D-19-0236.1.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., A. A. Wing, X. Tang, and E. L. Duran, 2020b: The critical role of cloud infrared radiation feedback in tropical cyclone development. Proc. Natl. Acad. Sci. USA, 117, 27 88427 892, https://doi.org/10.1073/pnas.2013584117.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., S. E. Koch, X. Chen, Y. Du, A. Seimon, Y. Q. Sun, J. Wei, and L. F. Bosart, 2022: Mesoscale gravity waves and midlatitude weather: A tribute to Fuqing Zhang. Bull. Amer. Meteor. Soc., 103, E129E156, https://doi.org/10.1175/BAMS-D-20-0005.1.

    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., and J. D. Neelin, 2019: Deep convective organization, moisture vertical structure, and convective transition using deep-inflow mixing. J. Atmos. Sci., 76, 965987, https://doi.org/10.1175/JAS-D-18-0122.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon. Wea. Rev., 125, 26432661, https://doi.org/10.1175/1520-0493(1997)125<2643:MIITCG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, B. H., and Coauthors, 2020: Recent advances in research on tropical cyclogenesis. Trop. Cyclone Res. Rev., 9, 87105, https://doi.org/10.1016/j.tcrr.2020.04.004.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., C. A. Davis, and W. C. Skamarock, 2000: Long-lived mesoconvective vortices and their environment. Part II: Induced thermodynamic destabilization in idealized simulations. Mon. Wea. Rev., 128, 33963412, https://doi.org/10.1175/1520-0493(2000)128<3396:LLMVAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uddin, M. J., Z. M. Nasrin, and Y. Li, 2021: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries over the north Indian Ocean. Dyn. Atmos. Oceans, 93, 101196, https://doi.org/10.1016/j.dynatmoce.2020.101196.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2012: Thermodynamic aspects of tropical cyclone formation. J. Atmos. Sci., 69, 24332451, https://doi.org/10.1175/JAS-D-11-0298.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 16811700, https://doi.org/10.1175/JAS-D-13-0257.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010a: Genesis of pre–Hurricane Felix (2007). Part I: The role of the easterly wave critical layer. J. Atmos. Sci., 67, 17111729, https://doi.org/10.1175/2009JAS3420.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, https://doi.org/10.1175/2010JAS3435.1.

    • Search Google Scholar
    • Export Citation
  • Wolding, B., J. Dias, G. Kiladis, F. Ahmed, S. W. Powell, E. Maloney, and M. Branson, 2020: Interactions between moisture and tropical convection. Part I: The coevolution of moisture and convection. J. Atmos. Sci., 77, 17831799, https://doi.org/10.1175/JAS-D-19-0225.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. Fang, and Z. Yu, 2022: Characteristics of the quasi‐periodic outbreaks of deep convection during tropical cyclone genesis. J. Geophys. Res. Atmos., 127, e2021JD035312, https://doi.org/10.1029/2021JD035312.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., and C. Gautier, 1978: Mesoscale events within a GATE tropical depression. Mon. Wea. Rev., 106, 789805, https://doi.org/10.1175/1520-0493(1978)106<0789:MEWAGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 551 551 29
Full Text Views 333 333 12
PDF Downloads 358 358 13