Evidence for the Influence of the Quasi-Biennial Oscillation on the Semiannual Oscillation in the Tropical Middle Atmosphere

Anne K. Smith aAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Anne K. Smith in
Current site
Google Scholar
PubMed
Close
,
Lesley J. Gray bNational Centre for Atmospheric Science, Oxford, United Kingdom
cDepartment of Physics, Oxford University, Oxford, United Kingdom

Search for other papers by Lesley J. Gray in
Current site
Google Scholar
PubMed
Close
, and
Rolando R. Garcia aAtmospheric Chemistry Observations and Modeling, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rolando R. Garcia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The semiannual oscillation (SAO) in zonally averaged zonal winds develops just above the quasi-biennial oscillation (QBO) and dominates the seasonal variability in the tropical upper stratosphere and lower mesosphere. The magnitude, seasonality, and latitudinal structure of the SAO vary with the phase of the QBO. There is also an annual oscillation (AO) whose magnitude at the equator is smaller than those of the SAO and QBO but not negligible. This work presents the relation between the SAO, QBO, AO, and time-mean wind in the tropical upper stratosphere and lower mesosphere using winds derived from satellite geopotential height observations. The winds are generally more westerly during the easterly phase of the QBO. The SAO extends to lower altitudes during periods where the QBO is characterized by deep easterly winds. The differences in the SAO associated with the QBO are roughly confined to the latitudes where the QBO has appreciable amplitude, suggesting that the mechanism is controlled by vertical coupling. The westerly phases of the SAO and AO show downward propagation with time. This analysis suggests that forcing by dissipation of waves with westerly momentum is responsible for the westerly acceleration of both the SAO and AO. The timing and structure of the easterly phases of the SAO and AO near the stratopause are consistent with the response to meridional advection of momentum across the equator during solstices; it is not apparent that local wave processes play important roles in the easterly phases in the region of the stratopause.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne K. Smith, aksmith@ucar.edu

Abstract

The semiannual oscillation (SAO) in zonally averaged zonal winds develops just above the quasi-biennial oscillation (QBO) and dominates the seasonal variability in the tropical upper stratosphere and lower mesosphere. The magnitude, seasonality, and latitudinal structure of the SAO vary with the phase of the QBO. There is also an annual oscillation (AO) whose magnitude at the equator is smaller than those of the SAO and QBO but not negligible. This work presents the relation between the SAO, QBO, AO, and time-mean wind in the tropical upper stratosphere and lower mesosphere using winds derived from satellite geopotential height observations. The winds are generally more westerly during the easterly phase of the QBO. The SAO extends to lower altitudes during periods where the QBO is characterized by deep easterly winds. The differences in the SAO associated with the QBO are roughly confined to the latitudes where the QBO has appreciable amplitude, suggesting that the mechanism is controlled by vertical coupling. The westerly phases of the SAO and AO show downward propagation with time. This analysis suggests that forcing by dissipation of waves with westerly momentum is responsible for the westerly acceleration of both the SAO and AO. The timing and structure of the easterly phases of the SAO and AO near the stratopause are consistent with the response to meridional advection of momentum across the equator during solstices; it is not apparent that local wave processes play important roles in the easterly phases in the region of the stratopause.

© 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Anne K. Smith, aksmith@ucar.edu
Save
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Anstey, J. A., and T. G. Shepherd, 2014: High-latitude influence of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 140, 121, https://doi.org/10.1002/qj.2132.

    • Search Google Scholar
    • Export Citation
  • Anstey, J. A., and Coauthors, 2022: Teleconnections of the quasi-biennial oscillation in a multi-model ensemble of QBO-resolving models. Quart. J. Roy. Meteor. Soc., 148, 15681592, https://doi.org/10.1002/qj.4048.

    • Search Google Scholar
    • Export Citation
  • Antonita, T. M., G. Ramkumar, K. K. Kumar, K. S. Appu, and K. V. S. Nambhoodiri, 2007: A quantitative study on the role of gravity waves in driving the tropical stratospheric semiannual oscillation. J. Geophys. Res., 112, D12115, https://doi.org/10.1029/2006JD008250.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and L. J. Gray, 2005: Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data. Geophys. Res. Lett., 32, L09806, https://doi.org/10.1029/2004GL022328.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

    • Search Google Scholar
    • Export Citation
  • Burrage, M. D., R. A. Vincent, H. G. Mayr, W. R. Skinner, N. F. Arnold, and P. B. Hays, 1996: Long-term variability in the equatorial middle atmosphere zonal wind. J. Geophys. Res., 101, 12 84712 854, https://doi.org/10.1029/96JD00575.

    • Search Google Scholar
    • Export Citation
  • Bushell, A. C., and Coauthors, 2022: Evaluation of the quasi-biennial oscillation in global climate models for the SPARC QBO-initiative. Quart. J. Roy. Meteor. Soc., 148, 14591489, https://doi.org/10.1002/qj.3765.

    • Search Google Scholar
    • Export Citation
  • Coy, L., P. A. Newman, S. Strahan, and S. Pawson, 2020: Seasonal variation of the quasi-biennial oscillation descent. J. Geophys. Res. Atmos., 125, e2020JD033077, https://doi.org/10.1029/2020JD033077.

    • Search Google Scholar
    • Export Citation
  • Dawkins, E. C. M., and Coauthors, 2018: Validation of SABER v2.0 operational temperature data with ground-based lidars in the mesosphere-lower thermosphere region (75–105 km). J. Geophys. Res. Atmos., 123, 99169934, https://doi.org/10.1029/2018JD028742.

    • Search Google Scholar
    • Export Citation
  • Delisi, D. P., and T. J. Dunkerton, 1988: Seasonal variation of the semiannual oscillation. J. Atmos. Sci., 45, 27722787, https://doi.org/10.1175/1520-0469(1988)045<2772:SVOTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1997: Interaction of the quasi-biennial oscillation and stratopause semiannual oscillation. J. Geophys. Res., 102, 26 10726 116, https://doi.org/10.1029/96JD03678.

    • Search Google Scholar
    • Export Citation
  • Elsbury, D., Y. Peings, and G. Magnusdottir, 2021: CMIP6 models underestimate the Holton-Tan effect. Geophys. Res. Lett., 48, e2021GL094083, https://doi.org/10.1029/2021GL094083.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, and M. Riese, 2015: Driving of the SAO by gravity waves as observed from satellite. Ann. Geophys., 33, 483504, https://doi.org/10.5194/angeo-33-483-2015.

    • Search Google Scholar
    • Export Citation
  • Ern, M., L. Hoffmann, and P. Preusse, 2017: Directional gravity wave momentum fluxes in the stratosphere derived from high resolution AIRS temperature data. Geophys. Res. Lett., 44, 475485, https://doi.org/10.1002/2016GL072007.

    • Search Google Scholar
    • Export Citation
  • Ern, M., M. Diallo, P. Preusse, M. G. Mlynczak, M. J. Schwartz, Q. Wu, and M. Riese, 2021: The semiannual oscillation (SAO) in the tropical middle atmosphere and its gravity wave driving in reanalyses and satellite observations. Atmos. Chem. Phys., 21, 13 76313 795, https://doi.org/10.5194/acp-21-13763-2021.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., G. L. Manney, L. J. Gray, and J. S. Wright, 2022: SPARC Reanalysis Intercomparison Project (S-RIP) final report. SPARC Rep. 10, 635 pp., https://doi.org/10.17874/800dee57d13.

  • Garcia, R. R., and F. Sassi, 1999: Modulation of the mesospheric semiannual oscillation by the quasibiennial oscillation. Earth Planets Space, 51, 563569, https://doi.org/10.1186/BF03353215.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., T. J. Dunkerton, R. S. Lieberman, and R. A. Vincent, 1997: Climatology of the semiannual oscillation of the tropical middle atmosphere. J. Geophys. Res., 102, 26 01926 032, https://doi.org/10.1029/97JD00207.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., M. J. Brown, J. Knight, M. Andrews, H. Lu, C. O’Reilly, and J. Anstey, 2020: Forecasting extreme stratospheric polar vortex events. Nat. Commun., 11, 4630, https://doi.org/10.1038/s41467-020-18299-7.

    • Search Google Scholar
    • Export Citation
  • Gray, L. J., H. Lu, M. J. Brown, J. R. Knight, and M. B. Andrews, 2022: Mechanisms of influence of the semi-annual oscillation on stratospheric sudden warmings. Quart. J. Roy. Meteor. Soc., 148, 12231241, https://doi.org/10.1002/qj.4256.

    • Search Google Scholar
    • Export Citation
  • Hampson, J., and P. Haynes, 2004: Phase alignment of the tropical stratospheric QBO in the annual cycle. J. Atmos. Sci., 61, 26272637, https://doi.org/10.1175/JAS3276.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., 1998: The latitudinal structure of the quasi-biennial oscillation. Quart. J. Roy. Meteor. Soc., 124, 26452670, https://doi.org/10.1002/qj.49712455206.

    • Search Google Scholar
    • Export Citation
  • Hirota, I., 1980: Observational evidence of the semiannual oscillation in the tropical middle atmosphere—A review. Pure Appl. Geophys., 118, 217238, https://doi.org/10.1007/BF01586452.

    • Search Google Scholar
    • Export Citation
  • Hitchman, M. H., and C. B. Leovy, 1988: Estimation of Kelvin wave contribution to the semiannual oscillation. J. Atmos. Sci., 45, 14621475, https://doi.org/10.1175/1520-0469(1988)045<1462:EOTKWC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasibiennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 22002208, https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and W. M. Wehrbein, 1980: A numerical model of the zonal mean circulation of the middle atmosphere. Pure Appl. Geophys., 118, 284306, https://doi.org/10.1007/BF01586455.

    • Search Google Scholar
    • Export Citation
  • Hopkins, R. H., 1975: Evidence of polar-tropical coupling in upper stratospheric zonal wind anomalies. J. Atmos. Sci., 32, 712719, https://doi.org/10.1175/1520-0469(1975)032<0712:EOPTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Sato, T. J. Dunkerton, S. Watanabe, S. Miyahara, and M. Takahashi, 2010: The roles of equatorial trapped waves and internal inertia–gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67, 963980, https://doi.org/10.1175/2009JAS3222.1.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., K. Hamilton, K. Miyazaki, M. Fujiwara, and J. A. Anstey, 2016: Representation of the tropical stratospheric zonal wind in global atmospheric reanalyses. Atmos. Chem. Phys., 16, 66816699, https://doi.org/10.5194/acp-16-6681-2016.

    • Search Google Scholar
    • Export Citation
  • Kawatani, Y., T. Hirooka, K. Hamilton, A. K. Smith, and M. Fujiwara, 2020: Representation of the equatorial stratopause semiannual oscillation in global atmospheric reanalyses. Atmos. Chem. Phys., 20, 91159133, https://doi.org/10.5194/acp-20-9115-2020.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and J. R. Holton, 1968: A theory of the quasi-biennial oscillation. J. Atmos. Sci., 25, 10951107, https://doi.org/10.1175/1520-0469(1968)025<1095:ATOTQB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Livesey, N. J., and Coauthors, 2020: Earth Observing System (EOS), Aura Microwave Limb Sounder (MLS) version 5.0x level 2 and 3 data quality and description document. JPL Tech. Rep. JPL D-105336, revision A, 183 pp., https://mls.jpl.nasa.gov/data/v5-0_data_quality_document.pdf.

  • Mlynczak, M. G., L. A. Hunt, R. R. Garcia, V. L. Harvey, B. T. Marshall, J. Yue, C. J. Mertens, and J. M. Russell III, 2022: Cooling and contraction of the mesosphere and lower thermosphere from 2002 to 2021. J. Geophys. Res. Atmos., 127, e2022JD036767, https://doi.org/10.1029/2022JD036767.

    • Search Google Scholar
    • Export Citation
  • Naujokat, B., 1986: An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43, 18731877, https://doi.org/10.1175/1520-0469(1986)043<1873:AUOTOQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peña‐Ortiz, C., H. Schmidt, M. A. Giorgetta, and M. Keller, 2010: QBO modulation of the semiannual oscillation in MAECHAM5 and HAMMONIA. J. Geophys. Res., 115, D21106, https://doi.org/10.1029/2010JD013898.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., I. M. Moroz, S. M. Osprey, and P. L. Read, 2018: Descent rate models of the synchronization of the quasi-biennial oscillation by the annual cycle in tropical upwelling. J. Atmos. Sci., 75, 22812297, https://doi.org/10.1175/JAS-D-17-0267.1.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., M. J. Alexander, and J. R. Holton, 1998: An analysis of the structure and forcing of the equatorial semiannual oscillation in zonal wind. J. Geophys. Res., 103, 17591774, https://doi.org/10.1029/97JD02679.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the version 1.07 temperature versus pressure profiles in the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, https://doi.org/10.1029/2008JD010013.

    • Search Google Scholar
    • Export Citation
  • Richter, J. H., and R. R. Garcia, 2006: On the forcing of the mesospheric semi-annual oscillation in the Whole Atmosphere Community Climate Model. Geophys. Res. Lett., 33, L01806, https://doi.org/10.1029/2005GL024378.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., 1982: Sampling theory for asynoptic satellite observations. Part II: Fast Fourier synoptic mapping. J. Atmos. Sci., 39, 26012614, https://doi.org/10.1175/1520-0469(1982)039<2601:STFASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schenzinger, V., S. Osprey, L. Gray, and N. Butchart, 2017: Defining metrics of the quasi-biennial oscillation in global climate models. Geosci. Model Dev., 10, 21572168, https://doi.org/10.5194/gmd-10-2157-2017.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., R. R. Garcia, A. C. Moss, and N. J. Mitchell, 2017: The semiannual oscillation of the tropical zonal wind in the middle atmosphere derived from satellite geopotential height retrievals. J. Atmos. Sci., 74, 24132425, https://doi.org/10.1175/JAS-D-17-0067.1.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., and Coauthors, 2022: The equatorial stratospheric semiannual oscillation and time-mean winds in QBOi model. Quart. J. Roy. Meteor. Soc., 148, 15931609, https://doi.org/10.1002/qj.3690.

    • Search Google Scholar
    • Export Citation
  • Tomikawa, Y., K. Sato, S. Watanabe, Y. Kawatani, K. Miyazaki, and M. Takahashi, 2008: Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM. J. Geophys. Res., 113, D17117, https://doi.org/10.1029/2008JD009786.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 341 341 63
Full Text Views 177 177 12
PDF Downloads 208 208 17