Generation of Multiple Gravity Wave Couplets from Convection

Hongpei Yang aSchool of Atmospheric Sciences, Sun Yat-sen University, and SouthernMarine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
bGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, China
cKey Laboratory of Tropical Atmosphere–Ocean System, Sun Yat-sen University, Ministry of Education, Zhuhai, China

Search for other papers by Hongpei Yang in
Current site
Google Scholar
PubMed
Close
,
Yu Du aSchool of Atmospheric Sciences, Sun Yat-sen University, and SouthernMarine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
bGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, China
cKey Laboratory of Tropical Atmosphere–Ocean System, Sun Yat-sen University, Ministry of Education, Zhuhai, China

Search for other papers by Yu Du in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8828-5431
, and
Junhong Wei aSchool of Atmospheric Sciences, Sun Yat-sen University, and SouthernMarine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
bGuangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai, China
cKey Laboratory of Tropical Atmosphere–Ocean System, Sun Yat-sen University, Ministry of Education, Zhuhai, China

Search for other papers by Junhong Wei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6092-5684
Restricted access

Abstract

The generation of multiple wave couplets with deep tropospheric downdrafts/updrafts by convection is explored through idealized 2D moist numerical simulations as well as dry experiments with prescribed artificial latent heating. These wave couplets are capable of horizontally propagating over a long distance at a fast speed with vertical motions spanning the entire troposphere. The timing of wave generation is determined by the variation in the local heating rate, which arose from the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. The amplitudes of wave couplets also correspond well with the strength of the local heating rate. The heat budget analysis highlights the crucial roles of both latent heating and nonlinear advection in the generation of the tropospheric wave couplets. Strong latent heating induces the thermodynamic imbalance and thus triggers waves. Meanwhile, latent heating also increases vertical motion in the source region and thus enhances nonlinear advection through transferring heat upward. Nonlinear advection, which has a comparable magnitude to latent heating in the upper troposphere, partially offsets the balancing effect of adiabatic heating/cooling, and results in a more persistent imbalance at high levels, allowing for the emission of consecutive waves even when latent heating becomes weak. In the simulation with weak nonlinear advection, fewer wave couplets are found, as the effect of latent heating is more easily offset by adiabatic cooling before it weakens.

Significance Statement

The generation of gravity waves in the troposphere by convection is of significant importance in the fields of atmospheric science and meteorology. The waves play a crucial role in the initiation and organization of convection, and the parameterization of wave momentum flux in global numerical models. This study aimed to investigate the generation of wave couplets in the troposphere through idealized numerical simulations with varying prescribed latent heating. The results showed that gravity wave couplets were generated in succession as a result of the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. This study highlighted an important but yet complex issue of gravity waves being generated within convection by nonlinear sources other than latent heating, which had been neglected in many recent studies on the topic. These findings deepened our understanding of convectively generated gravity waves and paved the way for coupled wave–convection relationship studies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Du, duyu7@mail.sysu.edu.cn

Abstract

The generation of multiple wave couplets with deep tropospheric downdrafts/updrafts by convection is explored through idealized 2D moist numerical simulations as well as dry experiments with prescribed artificial latent heating. These wave couplets are capable of horizontally propagating over a long distance at a fast speed with vertical motions spanning the entire troposphere. The timing of wave generation is determined by the variation in the local heating rate, which arose from the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. The amplitudes of wave couplets also correspond well with the strength of the local heating rate. The heat budget analysis highlights the crucial roles of both latent heating and nonlinear advection in the generation of the tropospheric wave couplets. Strong latent heating induces the thermodynamic imbalance and thus triggers waves. Meanwhile, latent heating also increases vertical motion in the source region and thus enhances nonlinear advection through transferring heat upward. Nonlinear advection, which has a comparable magnitude to latent heating in the upper troposphere, partially offsets the balancing effect of adiabatic heating/cooling, and results in a more persistent imbalance at high levels, allowing for the emission of consecutive waves even when latent heating becomes weak. In the simulation with weak nonlinear advection, fewer wave couplets are found, as the effect of latent heating is more easily offset by adiabatic cooling before it weakens.

Significance Statement

The generation of gravity waves in the troposphere by convection is of significant importance in the fields of atmospheric science and meteorology. The waves play a crucial role in the initiation and organization of convection, and the parameterization of wave momentum flux in global numerical models. This study aimed to investigate the generation of wave couplets in the troposphere through idealized numerical simulations with varying prescribed latent heating. The results showed that gravity wave couplets were generated in succession as a result of the imbalances among latent heating, nonlinear advection, and adiabatic heating/cooling. This study highlighted an important but yet complex issue of gravity waves being generated within convection by nonlinear sources other than latent heating, which had been neglected in many recent studies on the topic. These findings deepened our understanding of convectively generated gravity waves and paved the way for coupled wave–convection relationship studies.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yu Du, duyu7@mail.sysu.edu.cn
Save
  • Adams-Selin, R. D., 2020: Impact of convectively generated low-frequency gravity waves on evolution of mesoscale convective systems. J. Atmos. Sci., 77, 34413460, https://doi.org/10.1175/JAS-D-19-0250.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., and R. H. Johnson, 2013: Examination of gravity waves associated with the 13 March 2003 bow echo. Mon. Wea. Rev., 141, 37353756, https://doi.org/10.1175/MWR-D-12-00343.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. R. Holton, and D. R. Durran, 1995: The gravity wave response above deep convection in a squall line simulation. J. Atmos. Sci., 52, 22122226, https://doi.org/10.1175/1520-0469(1995)052<2212:TGWRAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., J. H. Richter, and B. R. Sutherland, 2006: Generation and trapping of gravity waves from convection with comparison to parameterization. J. Atmos. Sci., 63, 29632977, https://doi.org/10.1175/JAS3792.1.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., 2004: Gravity wave generation by a three-dimensional thermal forcing. J. Atmos. Sci., 61, 18051815, https://doi.org/10.1175/1520-0469(2004)061<1805:GWGBAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beres, J. H., M. J. Alexander, and J. R. Holton, 2004: A method of specifying the gravity wave spectrum above convection based on latent heating properties and background wind. J. Atmos. Sci., 61, 324337, https://doi.org/10.1175/1520-0469(2004)061<0324:AMOSTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and P. K. Smolarkiewicz, 1989: Gravity waves, compensating subsidence and detrainment around cumulus clouds. J. Atmos. Sci., 46, 740759, https://doi.org/10.1175/1520-0469(1989)046<0740:GWCSAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., J. C. Wyngaard, and J. M. Fritsch, 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, https://doi.org/10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chun, H.-Y., H.-J. Choi, and I.-S. Song, 2008: Effects of nonlinearity on convectively forced internal gravity waves: Application to a gravity wave drag parameterization. J. Atmos. Sci., 65, 557575, https://doi.org/10.1175/2007JAS2255.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2015: Thermally driven diurnally periodic wind signals off the east coast of China. J. Atmos. Sci., 72, 28062821, https://doi.org/10.1175/JAS-D-14-0339.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2018: Diurnal cycle of rainfall and winds near the south coast of China. J. Atmos. Sci., 75, 20652082, https://doi.org/10.1175/JAS-D-17-0397.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and F. Zhang, 2019: Banded convective activity associated with mesoscale gravity waves over southern China. J. Geophys. Res. Atmos., 124, 19121930, https://doi.org/10.1029/2018JD029523.

    • Search Google Scholar
    • Export Citation
  • Du, Y., F. Zhang, Y. Q. Sun, J. Wei, and X. Li, 2021: Practical and intrinsic predictability of wave‐convection coupled bands over southern China. J. Geophys. Res. Atmos., 126, e2021JD034882, https://doi.org/10.1029/2021JD034882.

    • Search Google Scholar
    • Export Citation
  • Durran, D. R., 1990: Mountain waves and downslope winds. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 45, Amer. Meteor. Soc., 59–81, https://doi.org/10.1007/978-1-935704-25-6_4.

  • Fang, J., and Y. Du, 2022: A global survey of diurnal offshore propagation of rainfall. Nat. Commun., 13, 7437, https://doi.org/10.1038/s41467-022-34842-0.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2002: Upstream influence of numerically simulated squall-line storms. Quart. J. Roy. Meteor. Soc., 128, 893912, https://doi.org/10.1256/0035900021643737.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., G. L. Mullendore, and S.-H. Kim, 2006: Discrete propagation in numerically simulated nocturnal squall lines. Mon. Wea. Rev., 134, 37353752, https://doi.org/10.1175/MWR3268.1.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 50, 1003, https://doi.org/10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Groff, F. P., R. D. Adams-Selin, and R. S. Schumacher, 2021: Response of MCS low-frequency gravity waves to vertical wind shear and nocturnal thermodynamic environments. J. Atmos. Sci., 78, 38893908, https://doi.org/10.1175/JAS-D-20-0208.1.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., R. H. Johnson, and S. N. Tulich, 2001: Some simple simulations of thunderstorm outflows. J. Atmos. Sci., 58, 504516, https://doi.org/10.1175/1520-0469(2001)058<0504:SSSOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halliday, O. J., S. D. Griffiths, D. J. Parker, A. Stirling, and S. Vosper, 2018: Forced gravity waves and the tropospheric response to convection. Quart. J. Roy. Meteor. Soc., 144, 917933, https://doi.org/10.1002/qj.3278.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., and J.-J. Baik, 2009: Theoretical studies of convectively forced mesoscale flows in three dimensions. Part I: Uniform basic-state flow. J. Atmos. Sci., 66, 947965, https://doi.org/10.1175/2008JAS2915.1.

    • Search Google Scholar
    • Export Citation
  • Han, J.-Y., and J.-J. Baik, 2012: Nonlinear effects on convectively forced two-dimensional mesoscale flows. J. Atmos. Sci., 69, 33913404, https://doi.org/10.1175/JAS-D-11-0335.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., and Coauthors, 2016: High‐frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus. Geophys. Res. Lett., 43, 66296635, https://doi.org/10.1002/2016GL069426.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., 2015: Gravity waves: Convectively generated gravity waves. Encyclopedia of Atmospheric Sciences, Elsevier, 171–179.

  • Lane, T. P., and M. J. Reeder, 2001: Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci., 58, 24272440, https://doi.org/10.1175/1520-0469(2001)058<2427:CGGWAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and T. L. Clark, 2002: Gravity waves generated by the dry convective boundary layer: Two-dimensional scale selection and boundary-layer feedback. Quart. J. Roy. Meteor. Soc., 128, 15431570, https://doi.org/10.1002/qj.200212858308.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and F. Zhang, 2011: Coupling between gravity waves and tropical convection at mesoscales. J. Atmos. Sci., 68, 25822598, https://doi.org/10.1175/2011JAS3577.1.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., M. J. Reeder, and T. L. Clark, 2001: Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci., 58, 12491274, https://doi.org/10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and K.-K. Tung, 1976: Banded convective activity and ducted gravity waves. Mon. Wea. Rev., 104, 16021617, https://doi.org/10.1175/1520-0493(1976)104<1602:BCAADG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and Y. P. Richardson, 2014: The influence of environmental low-level shear and cold pools on tornadogenesis: Insights from idealized simulations. J. Atmos. Sci., 71, 243275, https://doi.org/10.1175/JAS-D-13-0159.1.

    • Search Google Scholar
    • Export Citation
  • McAnelly, R. L., J. E. Nachamkin, W. R. Cotton, and M. E. Nicholls, 1997: Upscale evolution of MCSs: Doppler radar analysis and analytical investigation. Mon. Wea. Rev., 125, 10831110, https://doi.org/10.1175/1520-0493(1997)125<1083:UEOMDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Nicholls, M. E., R. A. Pielke, and W. R. Cotton, 1991: Thermally forced gravity waves in an atmosphere at rest. J. Atmos. Sci., 48, 18691884, https://doi.org/10.1175/1520-0469(1991)048<1869:TFGWIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and D. R. Durran, 1996: The influence of convectively generated thermal forcing on the mesoscale circulation around squall lines. J. Atmos. Sci., 53, 29242951, https://doi.org/10.1175/1520-0469(1996)053<2924:TIOCGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., and M. J. Alexander, 1999: Linear stratospheric gravity waves above convective thermal forcing. J. Atmos. Sci., 56, 24342446, https://doi.org/10.1175/1520-0469(1999)056<2434:LSGWAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. Durran, and C. Bretherton, 1993: Comments on “Thermally forced gravity waves in an atmosphere at rest.” J. Atmos. Sci., 50, 40974101, https://doi.org/10.1175/1520-0469(1993)050<4097:COFGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pandya, R. E., D. Durran, and M. L. Weisman, 2000: The influence of convective thermal forcing on the three-dimensional circulation around squall lines. J. Atmos. Sci., 57, 2945, https://doi.org/10.1175/1520-0469(2000)057<0029:TIOCTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and F. Zhang, 2014: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., 52, 3376, https://doi.org/10.1002/2012RG000419.

    • Search Google Scholar
    • Export Citation
  • Prasad, A. A., S. C. Sherwood, M. J. Reeder, and T. P. Lane, 2019: Rapidly evolving cirrus clouds modulated by convectively generated gravity waves. J. Geophys. Res. Atmos., 124, 73277338, https://doi.org/10.1029/2019JD030538.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., V. Venkateswaran, and M. Crochet, 1993: Observations of a mesoscale ducted gravity wave. J. Atmos. Sci., 50, 32773291, https://doi.org/10.1175/1520-0469(1993)050<3277:OOAMDG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, https://doi.org/10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., S. E. Koch, X. Chen, Y. Du, A. Seimon, Y. Q. Sun, J. Wei, and L. F. Bosart, 2022: Mesoscale gravity waves and midlatitude weather: A tribute to Fuqing Zhang. Bull. Amer. Meteor. Soc., 103, E129E156, https://doi.org/10.1175/BAMS-D-20-0005.1.

    • Search Google Scholar
    • Export Citation
  • Seo, J. M., J.-J. Baik, and H.-Y. Chun, 2018: Theoretical investigation of nonhydrostatic effects on convectively forced flows: Propagating and evanescent gravity-wave modes. Phys. Fluids, 30, 126604, https://doi.org/10.1063/1.5053444.

    • Search Google Scholar
    • Export Citation
  • Shige, S., and T. Satomura, 2001: Westward generation of eastward-moving tropical convective bands in TOGA COARE. J. Atmos. Sci., 58, 37243740, https://doi.org/10.1175/1520-0469(2001)058<3724:WGOEMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, I.-S., H.-Y. Chun, and T. P. Lane, 2003: Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci., 60, 19601980, https://doi.org/10.1175/1520-0469(2003)060<1960:GMOCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stechmann, S. N., and A. J. Majda, 2009: Gravity waves in shear and implications for organized convection. J. Atmos. Sci., 66, 25792599, https://doi.org/10.1175/2009JAS2976.1.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., M. J. Alexander, M. Hedlin, C. D. de Groot-Hedlin, and L. Hoffmann, 2016: A case study on the far-field properties of propagating tropospheric gravity waves. Mon. Wea. Rev., 144, 29472961, https://doi.org/10.1175/MWR-D-16-0054.1.

    • Search Google Scholar
    • Export Citation
  • Su, T., and G. Zhai, 2017: The role of convectively generated gravity waves on convective initiation: A case study. Mon. Wea. Rev., 145, 335359, https://doi.org/10.1175/MWR-D-16-0196.1.

    • Search Google Scholar
    • Export Citation
  • Varble, A., H. Morrison, and E. Zipser, 2020: Effects of under-resolved convective dynamics on the evolution of a squall line. Mon. Wea. Rev., 148, 289311, https://doi.org/10.1175/MWR-D-19-0187.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhang, J. Peng, and J. Guan, 2018: Mesoscale gravity waves in the mei-yu front system. J. Atmos. Sci., 75, 587609, https://doi.org/10.1175/JAS-D-17-0012.1.

    • Search Google Scholar
    • Export Citation
  • Wei, J., and F. Zhang, 2014: Mesoscale gravity waves in moist baroclinic jet–front systems. J. Atmos. Sci., 71, 929952, https://doi.org/10.1175/JAS-D-13-0171.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520, https://doi.org/10.1175/1520-0493(1982)110<0504:TDONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., S. B. Trier, D. W. Reif, R. D. Roberts, and T. M. Weckwerth, 2018: Nocturnal elevated convection initiation of the PECAN 4 July hailstorm. Mon. Wea. Rev., 146, 243262, https://doi.org/10.1175/MWR-D-17-0176.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2144 2045 28
Full Text Views 319 296 3
PDF Downloads 351 322 4