Diabatic Heat Effects on the Generation of Energy for Evolution of a SACZ Event: A Perspective from the Lorenz Energy Cycle

Jaime Fernando António aCenter for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Jaime Fernando António in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-8667-1152
and
José Antonio Aravéquia aCenter for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by José Antonio Aravéquia in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Here we used meteorological datasets from ERA5 to study the dynamic and thermodynamic characteristics of a SACZ event that occurred between 12 and 26 December 2013. This is an atypical SACZ episode with considerable variations in cloudiness band positioning and high rainfall amounts, causing enormous problems for society. We study this case through the Lorenz energy cycle (LEC), focusing mainly on the role of diabatic heating in energy generation and consequently in circulation aspects, analyzing the event in three stages (formation, development, and dissipation), and discussing it according to the convection localization pattern. The diabatic heat rate has a large impact on the energy generation of SACZ events at midlevels south of 24°S and below 900 hPa in the tropics. In LEC, the generation terms in the SACZ area were larger at the beginning (12–15 December) and smaller at the ending periods (23–26 December), with means of 21.23 and −7.62 W m−2, respectively. The conversion terms follow the LEC directions, except for barotropic instability [C(KE, KM) < 0] that dominates throughout the analyzed periods. The convection area expansion to the north between 16 and 22 December was reflected by the most intense heating in the tropics and weaker barotropic instability. The friction term did not favor the event decay; therefore, we concluded that the cooling through a negative covariance between Q and T contributed to the event decay. We find that these results were largely influenced by a midlatitude wave train configuration that acted to favor the persistence, expansion, and decay of the event.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jaime Fernando António, jaime.fernandes@inpe.br

Abstract

Here we used meteorological datasets from ERA5 to study the dynamic and thermodynamic characteristics of a SACZ event that occurred between 12 and 26 December 2013. This is an atypical SACZ episode with considerable variations in cloudiness band positioning and high rainfall amounts, causing enormous problems for society. We study this case through the Lorenz energy cycle (LEC), focusing mainly on the role of diabatic heating in energy generation and consequently in circulation aspects, analyzing the event in three stages (formation, development, and dissipation), and discussing it according to the convection localization pattern. The diabatic heat rate has a large impact on the energy generation of SACZ events at midlevels south of 24°S and below 900 hPa in the tropics. In LEC, the generation terms in the SACZ area were larger at the beginning (12–15 December) and smaller at the ending periods (23–26 December), with means of 21.23 and −7.62 W m−2, respectively. The conversion terms follow the LEC directions, except for barotropic instability [C(KE, KM) < 0] that dominates throughout the analyzed periods. The convection area expansion to the north between 16 and 22 December was reflected by the most intense heating in the tropics and weaker barotropic instability. The friction term did not favor the event decay; therefore, we concluded that the cooling through a negative covariance between Q and T contributed to the event decay. We find that these results were largely influenced by a midlatitude wave train configuration that acted to favor the persistence, expansion, and decay of the event.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jaime Fernando António, jaime.fernandes@inpe.br
Save
  • Ambrizzi, T., B. J. Hoskins, and H.-H. Hsu, 1995: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci., 52, 36613672, https://doi.org/10.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aravequia, J. A., V. B. Rao, and J. P. Bonatti, 1995: The role of moist baroclinic instability in the growth and structure of monsoon depressions. J. Atmos. Sci., 52, 43934409, https://doi.org/10.1175/1520-0469(1995)052<4393:TROMBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., and D. S. Arndt, Eds., 2014: State of the Climate in 2013. Bull. Amer. Meteor. Soc., 95 (7), S1S279, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2002: Extreme precipitation events in southeastern South America and large-scale convective patterns in the South Atlantic convergence zone. J. Climate, 15, 23772394, https://doi.org/10.1175/1520-0442(2002)015<2377:EPEISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and B. Liebmann, 2004: The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Climate, 17, 88108, https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Coelho, C. A. S., and Coauthors, 2016: The 2014 southeast Brazil austral summer drought: Regional scale mechanisms and teleconnections. Climate Dyn., 46, 37373752, https://doi.org/10.1007/s00382-015-2800-1.

    • Search Google Scholar
    • Export Citation
  • Da Silva, L. A., and P. Satyamurty, 2013: Evolution of the Lorenz energy cycle in the intertropical convergence zone in the South American sector of the Atlantic Ocean. J. Climate, 26, 34663481, https://doi.org/10.1175/JCLI-D-11-00426.1.

    • Search Google Scholar
    • Export Citation
  • de Jesus, E. M., R. P. Rocha, N. M. Crespo, M. S. Reboita, and L. F. Gozzo, 2021: Multi-model climate projections of the main cyclogenesis hot-spots and associated winds over the eastern coast of South America. Climate Dyn., 56, 537557, https://doi.org/10.1007/s00382-020-05490-1.

    • Search Google Scholar
    • Export Citation
  • Fialho, W. M. B., L. M. V. Carvalho, M. A. Gan, and S. F. Veiga, 2023: Mechanisms controlling persistent South Atlantic convergence zone events on intraseasonal timescales. Theor. Appl. Climatol., 152, 7596, https://doi.org/10.1007/s00704-023-04375-7.

    • Search Google Scholar
    • Export Citation
  • Gan, M. A., and V. B. Rao, 1999: Energetics of the high frequency disturbances over South America. Rev. Bras. Geof., 17, 2128, https://doi.org/10.1590/S0102-261X1999000100003.

    • Search Google Scholar
    • Export Citation
  • Gan, M. A., V. E. Kousky, and C. F. Ropelewski, 2004: The South America monsoon circulation and its relationship to rainfall over west-central Brazil. J. Climate, 17, 4766, https://doi.org/10.1175/1520-0442(2004)017<0047:TSAMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Graff, L. S., and J. H. Lacasce, 2012: Changes in the extratropical storm tracks in response to changes in SST in an AGCM. J. Climate, 25, 18541870, https://doi.org/10.1175/JCLI-D-11-00174.1.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., 2019: Madden–Julian oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Climate Dyn., 53, 907932, https://doi.org/10.1007/s00382-019-04622-6.

    • Search Google Scholar
    • Export Citation
  • Grimm, A. M., and P. L. S. Dias, 1995: Analysis of tropical–extratropical interactions with influence functions of a barotropic model. J. Atmos. Sci., 52, 35383555, https://doi.org/10.1175/1520-0469(1995)052<3538:AOTIWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gutierrez, E. R., P. L. S. Dias, J. A. Veiga, R. Camayo, and A. dos Santos, 2009: Multivariate analysis of the energy cycle of the South American rainy season. Int. J. Climatol., 29, 22562269, https://doi.org/10.1002/joc.1858.

    • Search Google Scholar
    • Export Citation
  • Hantel, M., and H.-R. Baader, 1978: Diabatic heating climatology of the zonal atmosphere. J. Atmos. Sci., 35, 11801189, https://doi.org/10.1175/1520-0469(1978)035<1180:DHCOTZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter, No. 147, ECMWF, Reading, United Kingdom, 7, https://www.ecmwf.int/sites/default/files/elibrary/2016/16299-newsletter-no147-spring-2016.pdf.

  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th ed. Elsevier, 552 pp.

  • Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a realistic longitudinally varying flow. J. Atmos. Sci., 50, 16611671, https://doi.org/10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, https://doi.org/10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and M.-K. Kim, 2013: Examination of the global Lorenz energy cycle using MERRA and NCEP-Reanalysis 2. Climate Dyn., 40, 14991513, https://doi.org/10.1007/s00382-012-1358-4.

    • Search Google Scholar
    • Export Citation
  • Kodama, Y., 1992: Large-scale common features of subtropical precipitation zones (the Baiu frontal zone, the SPCZ, and the SACZ) Part I: Characteristics of subtropical frontal zones. J. Meteor. Soc. Japan, 70, 813836, https://doi.org/10.2151/jmsj1965.70.4_813.

    • Search Google Scholar
    • Export Citation
  • Kousky, V. E., and M. A. Gan, 1981: Upper tropospheric cyclonic vortices in the tropical South Atlantic. Tellus, 33A, 538551, https://doi.org/10.3402/tellusa.v33i6.10775.

    • Search Google Scholar
    • Export Citation
  • Lenters, J. D., and K. H. Cook, 1997: On the origin of the Bolivian high and related circulation features of the South American climate. J. Atmos. Sci., 54, 656678, https://doi.org/10.1175/1520-0469(1997)054<0656:OTOOTB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, X. Jiang, D. Feldman, and Y. L. Yung, 2007: Lorenz energy cycle of the global atmosphere based on reanalysis datasets. Geophys. Res. Lett., 34, L16813, https://doi.org/10.1029/2007GL029985.

    • Search Google Scholar
    • Export Citation
  • Li, L., X. Jiang, M. T. Chahine, J. Wang, and Y. L. Yung, 2011: The mechanical energies of the global atmosphere in El Niño and La Niña years. J. Atmos. Sci., 68, 30723078, https://doi.org/10.1175/JAS-D-11-072.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Ling, J., and C. Zhang, 2013: Diabatic heating profiles in recent global reanalyses. J. Climate, 26, 33073325, https://doi.org/10.1175/JCLI-D-12-00384.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Search Google Scholar
    • Export Citation
  • Marques, C. A. F., A. Rocha, J. Corte-Real, J. M. Castanheira, J. Ferreira, and P. Melo-Gonçalves, 2009: Global atmospheric energetic from NCEP-Reanalysis 2 and ECMWF-ERA40 reanalysis. Int. J. Climatol., 29, 159174, https://doi.org/10.1002/joc.1704.

    • Search Google Scholar
    • Export Citation
  • Mendonça, R. W. B., and J. P. Bonatti, 2008a: Study of the modal energetics for SACZ episodes. Part I: Observational analyses. Rev. Bras. Meteor., 23, 360380, https://doi.org/10.1590/S0102-77862008000400001.

    • Search Google Scholar
    • Export Citation
  • Mendonça, R. W. B., and J. P. Bonatti, 2008b: Study of the modal energetics for SACZ episodes. Part II: Impact of the model resolution and the convection parameterization. Rev. Bras. Meteor., 23, 381403, https://doi.org/10.1590/S0102-77862008000400002.

    • Search Google Scholar
    • Export Citation
  • Muench, H. S., 1965: On the dynamics of the wintertime stratosphere circulation. J. Atmos. Sci., 22, 349360, https://doi.org/10.1175/1520-0469(1965)022<0349:OTDOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, https://doi.org/10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., and J. P. Peixóto, 1974: The annual cycle of the energetics of the atmosphere on a planetary scale. J. Geophys. Res., 79, 27052719, https://doi.org/10.1029/JC079i018p02705.

    • Search Google Scholar
    • Export Citation
  • Pan, Y., L. Li, X. Jiang, G. Li, W. Zhang, X. Wang, and A. P. Ingersoll, 2017: Earth’s changing global atmospheric energy cycle in response to climate change. Nat. Commun., 8, 14367, https://doi.org/10.1038/ncomms14367.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159, https://doi.org/10.1029/JC079i015p02149.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Pezzi, L. P., M. F. L. Quadro, J. A. Lorenzzetti, A. J. Miller, E. B. Rosa, L. N. Lima, and U. A. Sutil, 2022: The effect of oceanic South Atlantic convergence zone episodes on regional SST anomalies: The roles of heat fluxes and upper-ocean dynamics. Climate Dyn., 59, 20412065, https://doi.org/10.1007/s00382-022-06195-3.

    • Search Google Scholar
    • Export Citation
  • Pezzi, L. P., and Coauthors, 2023: Oceanic SACZ produces an abnormally wet 2021/2022 rainy season in South America. Sci. Rep., 13, 1455, https://doi.org/10.1038/s41598-023-28803-w.

    • Search Google Scholar
    • Export Citation
  • Reboita, M. S., R. P. da Rocha, M. R. de Souza, and M. Llopart, 2018: Extratropical cyclones over the southwestern South Atlantic Ocean: HadGEM2-ES and RegCM4 projections. Int. J. Climatol., 38, 28662879, https://doi.org/10.1002/joc.5468.

    • Search Google Scholar
    • Export Citation
  • Rosso, F. V., N. T. Boiaski, S. E. T. Ferraz, and T. C. Robles, 2018: Influence of the Antarctic oscillation on the South Atlantic convergence zone. Atmosphere, 9, 431, https://doi.org/10.3390/atmos9110431.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., and S.-W. Son, 2012: The global atmospheric circulation response to tropical diabatic heating associated with the Madden–Julian oscillation during northern winter. J. Atmos. Sci., 69, 7996, https://doi.org/10.1175/2011JAS3686.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Storm tracks in the Southern Hemisphere. J. Atmos. Sci., 48, 21592178, https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., A. J. Matthews, M. M. Joshia, and D. P. Stevens, 2015a: The influence of diabatic heating in the South Pacific convergence zone on Rossby wave propagation and the mean flow. Quart. J. Roy. Meteor. Soc., 142, 901910, https://doi.org/10.1002/qj.2692.

    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., A. J. Matthews, D. P. Stevens, and M. M. Joshi, 2015b: A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones. Quart. J. Roy. Meteor. Soc., 141, 19972010, https://doi.org/10.1002/qj.2508.

    • Search Google Scholar
    • Export Citation
  • Veiga, J. A. P., A. B. Pezza, I. Simmonds, and P. L. S. Dias, 2008: An analysis of the environmental energetics associated with the transition of the first South Atlantic hurricane. Geophys. Res. Lett., 35, L15806, https://doi.org/10.1029/2008GL034511.

    • Search Google Scholar
    • Export Citation
  • Wahab, M. A., H. A. Basset, and A. M. Lasheen, 2002: On the mechanism of winter cyclogenesis in relation to vertical axis tilt. Meteor. Atmos. Phys., 81, 103127, https://doi.org/10.1007/s007030200033.

    • Search Google Scholar
    • Export Citation
  • Zhou, J., and K.-M. Lau, 1998: Does a monsoon climate exist over South America? J. Climate, 11, 10201040, https://doi.org/10.1175/1520-0442(1998)011<1020:DAMCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 532 532 374
Full Text Views 33 33 19
PDF Downloads 43 43 22