Lagrangian and Eulerian Supersaturation Statistics in Turbulent Cloudy Rayleigh–Bénard Convection: Applications for LES Subgrid Modeling

Kamal Kant Chandrakar aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kamal Kant Chandrakar in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2970-3458
,
Hugh Morrison aNational Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
, and
Raymond A. Shaw bMichigan Technological University, Houghton, Michigan

Search for other papers by Raymond A. Shaw in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulent fluctuations of scalar and velocity fields are critical for cloud microphysical processes, e.g., droplet activation and size distribution evolution, and can therefore influence cloud radiative forcing and precipitation formation. Lagrangian and Eulerian water vapor, temperature, and supersaturation statistics are investigated in direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in the Pi Convection Cloud Chamber to provide a foundation for parameterizing subgrid-scale fluctuations in atmospheric models. A subgrid model for water vapor and temperature variances and covariance and supersaturation variance is proposed, valid for both clear and cloudy conditions. Evaluation of phase change contributions through an a priori test using DNS data shows good performance of the model. Supersaturation is a nonlinear function of temperature and water vapor, and relative external fluxes of water vapor and heat (e.g., during entrainment-mixing and phase change) influence turbulent supersaturation fluctuations. Although supersaturation has autocorrelation and structure functions similar to the independent scalars (temperature and water vapor), the autocorrelation time scale of supersaturation differs. Relative scalar fluxes in DNS without cloud make supersaturation PDFs less skewed than the adiabatic case, where they are highly negatively skewed. However, droplet condensation changes the PDF shape response: it becomes positively skewed for the adiabatic case and negatively skewed when the sidewall relative fluxes are large. Condensation also increases correlations between water vapor and temperature in the presence of relative scalar fluxes but decreases correlations for the adiabatic case. These changes in correlation suppress supersaturation variability for the nonadiabatic cases and increase it for the adiabatic case. Implications of this work for subgrid microphysics modeling using a Lagrangian stochastic scheme are also discussed.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kamal Kant Chandrakar, kkchandr@ucar.edu

Abstract

Turbulent fluctuations of scalar and velocity fields are critical for cloud microphysical processes, e.g., droplet activation and size distribution evolution, and can therefore influence cloud radiative forcing and precipitation formation. Lagrangian and Eulerian water vapor, temperature, and supersaturation statistics are investigated in direct numerical simulations (DNS) of turbulent Rayleigh–Bénard convection in the Pi Convection Cloud Chamber to provide a foundation for parameterizing subgrid-scale fluctuations in atmospheric models. A subgrid model for water vapor and temperature variances and covariance and supersaturation variance is proposed, valid for both clear and cloudy conditions. Evaluation of phase change contributions through an a priori test using DNS data shows good performance of the model. Supersaturation is a nonlinear function of temperature and water vapor, and relative external fluxes of water vapor and heat (e.g., during entrainment-mixing and phase change) influence turbulent supersaturation fluctuations. Although supersaturation has autocorrelation and structure functions similar to the independent scalars (temperature and water vapor), the autocorrelation time scale of supersaturation differs. Relative scalar fluxes in DNS without cloud make supersaturation PDFs less skewed than the adiabatic case, where they are highly negatively skewed. However, droplet condensation changes the PDF shape response: it becomes positively skewed for the adiabatic case and negatively skewed when the sidewall relative fluxes are large. Condensation also increases correlations between water vapor and temperature in the presence of relative scalar fluxes but decreases correlations for the adiabatic case. These changes in correlation suppress supersaturation variability for the nonadiabatic cases and increase it for the adiabatic case. Implications of this work for subgrid microphysics modeling using a Lagrangian stochastic scheme are also discussed.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kamal Kant Chandrakar, kkchandr@ucar.edu
Save
  • Abade, G. C., W. W. Grabowski, and H. Pawlowska, 2018: Broadening of cloud droplet spectra through eddy hopping: Turbulent entraining parcel simulations. J. Atmos. Sci., 75, 33653379, https://doi.org/10.1175/JAS-D-18-0078.1.

    • Search Google Scholar
    • Export Citation
  • Berg, J., S. Ott, J. Mann, and B. Lüthi, 2009: Experimental investigation of Lagrangian structure functions in turbulence. Phys. Rev., 80E, 026316, https://doi.org/10.1103/PhysRevE.80.026316.

    • Search Google Scholar
    • Export Citation
  • Biferale, L., G. Boffetta, A. Celani, A. Lanotte, and F. Toschi, 2006: Lagrangian statistics in fully developed turbulence. J. Turbul., 7, N6, https://doi.org/10.1080/14685240500460832.

    • Search Google Scholar
    • Export Citation
  • Biferale, L., E. Bodenschatz, M. Cencini, A. S. Lanotte, N. T. Ouellette, F. Toschi, and H. Xu, 2008: Lagrangian structure functions in turbulence: A quantitative comparison between experiment and direct numerical simulation. Phys. Fluids, 20, 065103, https://doi.org/10.1063/1.2930672.

    • Search Google Scholar
    • Export Citation
  • Brown, R. D., Z. Warhaft, and G. A. Voth, 2009: Acceleration statistics of neutrally buoyant spherical particles in intense turbulence. Phys. Rev. Lett., 103, 194501, https://doi.org/10.1103/PhysRevLett.103.194501.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Castaing, B., and Coauthors, 1989: Scaling of hard thermal turbulence in Rayleigh-Bénard convection. J. Fluid Mech., 204, 130, https://doi.org/10.1017/S0022112089001643.

    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, K. Chang, D. Ciochetto, D. Niedermeier, M. Ovchinnikov, R. A. Shaw, and F. Yang, 2016: Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions. Proc. Natl. Acad. Sci. USA, 113, 14 24314 248, https://doi.org/10.1073/pnas.1612686113.

    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, D. Ciochetto, S. Karki, G. Kinney, and R. Shaw, 2017: Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence. Geophys. Res. Lett., 44, 43594367, https://doi.org/10.1002/2017GL072762.

    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, and R. A. Shaw, 2018: Influence of turbulent fluctuations on cloud droplet size dispersion and aerosol indirect effects. J. Atmos. Sci., 75, 31913209, https://doi.org/10.1175/JAS-D-18-0006.1.

    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., W. Cantrell, S. Krueger, R. A. Shaw, and S. Wunsch, 2020: Supersaturation fluctuations in moist turbulent Rayleigh–Bénard convection: A two-scalar transport problem. J. Fluid Mech., 884, A19, https://doi.org/10.1017/jfm.2019.895.

    • Search Google Scholar
    • Export Citation
  • Chandrakar, K. K., H. Morrison, W. W. Grabowski, G. H. Bryan, and R. A. Shaw, 2022: Supersaturation variability from scalar mixing: Evaluation of a new subgrid-scale model using direct numerical simulations of turbulent Rayleigh–Bénard convection. J. Atmos. Sci., 79, 11911210, https://doi.org/10.1175/JAS-D-21-0250.1.

    • Search Google Scholar
    • Export Citation
  • Chang, K., and Coauthors, 2016: A laboratory facility to study gas–aerosol–cloud interactions in a turbulent environment: The Π chamber. Bull. Amer. Meteor. Soc., 97, 23432358, https://doi.org/10.1175/BAMS-D-15-00203.1.

    • Search Google Scholar
    • Export Citation
  • Cooper, W. A., 1989: Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 13011311, https://doi.org/10.1175/1520-0469(1989)046<1301:EOVDGH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974a: Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Bound.-Layer Meteor., 7, 81106, https://doi.org/10.1007/BF00224974.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1974b: Three-dimensional numerical study of turbulence in an entraining mixed layer. Bound.-Layer Meteor., 7, 199226, https://doi.org/10.1007/BF00227913.

    • Search Google Scholar
    • Export Citation
  • Gardiner, C. W., 2004: Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences. Springer Series in Synergetics, Vol. 13, Springer, 415 pp.

  • Gollub, J. P., J. Clarke, M. Gharib, B. Lane, and O. Mesquita, 1991: Fluctuations and transport in a stirred fluid with a mean gradient. Phys. Rev. Lett., 67, 35073510, https://doi.org/10.1103/PhysRevLett.67.3507.

    • Search Google Scholar
    • Export Citation
  • Gotoh, T., I. Saito, and T. Watanabe, 2021: Spectra of supersaturation and liquid water content in cloud turbulence. Phys. Rev. Fluids, 6, 110512, https://doi.org/10.1103/PhysRevFluids.6.110512.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and G. C. Abade, 2017: Broadening of cloud droplet spectra through eddy hopping: Turbulent adiabatic parcel simulations. J. Atmos. Sci., 74, 14851493, https://doi.org/10.1175/JAS-D-17-0043.1.

    • Search Google Scholar
    • Export Citation
  • Grötzbach, G., 1983: Spatial resolution requirements for direct numerical simulation of the Rayleigh-Bénard convection. J. Comput. Phys., 49, 241264, https://doi.org/10.1016/0021-9991(83)90125-0.

    • Search Google Scholar
    • Export Citation
  • Katzwinkel, J., H. Siebert, T. Heus, and R. A. Shaw, 2014: Measurements of turbulent mixing and subsiding shells in trade wind cumuli. J. Atmos. Sci., 71, 28102822, https://doi.org/10.1175/JAS-D-13-0222.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., 1995: The influence of supersaturation fluctuations on droplet size spectra formation. J. Atmos. Sci., 52, 36203634, https://doi.org/10.1175/1520-0469(1995)052<3620:TIOSFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kulmala, M., Ü. Rannik, E. L. Zapadinsky, and C. F. Clement, 1997: The effect of saturation fluctuations on droplet growth. J. Aerosol Sci., 28, 13951409, https://doi.org/10.1016/S0021-8502(97)00015-3.

    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., A. Seminara, and F. Toschi, 2009: Cloud droplet growth by condensation in homogeneous isotropic turbulence. J. Atmos. Sci., 66, 16851697, https://doi.org/10.1175/2008JAS2864.1.

    • Search Google Scholar
    • Export Citation
  • Lanotte, A. S., L. Biferale, G. Boffetta, and F. Toschi, 2013: A new assessment of the second-order moment of Lagrangian velocity increments in turbulence. J. Turbul., 14, 3448, https://doi.org/10.1080/14685248.2013.839882.

    • Search Google Scholar
    • Export Citation
  • La Porta, A., G. A. Voth, A. M. Crawford, J. Alexander, and E. Bodenschatz, 2001: Fluid particle accelerations in fully developed turbulence. Nature, 409, 10171019, https://doi.org/10.1038/35059027.

    • Search Google Scholar
    • Export Citation
  • MacMillan, T., R. A. Shaw, W. H. Cantrell, and D. H. Richter, 2022: Direct numerical simulation of turbulence and microphysics in the Pi Chamber. Phys. Rev. Fluids, 7, 020501, https://doi.org/10.1103/PhysRevFluids.7.020501.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1991: Boundary-layer moisture regimes. Quart. J. Roy. Meteor. Soc., 117, 151176, https://doi.org/10.1002/qj.49711749708.

  • Mazin, I., 1968: Stochastic condensation and its effect on formation of cloud drop-size distribution. Bull. Amer. Meteor. Soc., 49, 595, https://doi.org/10.1175/1520-0477-49.5.543.

    • Search Google Scholar
    • Export Citation
  • Mellado, J. P., M. Puche, and C. C. van Heerwaarden, 2017: Moisture statistics in free convective boundary layers growing into linearly stratified atmospheres. Quart. J. Roy. Meteor. Soc., 143, 24032419, https://doi.org/10.1002/qj.3095.

    • Search Google Scholar
    • Export Citation
  • Monin, A., and A. M. Yaglom, 1971: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 1. MIT Press, 769 pp.

  • Monin, A., and A. M. Yaglom, 1975: Statistical Fluid Mechanics: Mechanics of Turbulence. Vol. 2. MIT Press, 874 pp.

  • Niedermeier, D., K. Chang, W. Cantrell, K. K. Chandrakar, D. Ciochetto, and R. A. Shaw, 2018: Observation of a link between energy dissipation rate and oscillation frequency of the large-scale circulation in dry and moist Rayleigh-Bénard turbulence. Phys. Rev. Fluids, 3, 083501, https://doi.org/10.1103/PhysRevFluids.3.083501.

    • Search Google Scholar
    • Export Citation
  • Paoli, R., and K. Shariff, 2009: Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723740, https://doi.org/10.1175/2008JAS2734.1.

    • Search Google Scholar
    • Export Citation
  • Pope, S., 1994: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech., 26, 2363, https://doi.org/10.1146/annurev.fl.26.010194.000323.

    • Search Google Scholar
    • Export Citation
  • Prabhakaran, P., A. S. M. Shawon, G. Kinney, S. Thomas, W. Cantrell, and R. A. Shaw, 2020: The role of turbulent fluctuations in aerosol activation and cloud formation. Proc. Natl. Acad. Sci. USA, 117, 16 83116 838, https://doi.org/10.1073/pnas.2006426117.

    • Search Google Scholar
    • Export Citation
  • Prabhakaran, P., S. Thomas, W. Cantrell, R. A. Shaw, and F. Yang, 2022: Sources of stochasticity in the growth of cloud droplets: Supersaturation fluctuations versus turbulent transport. J. Atmos. Sci., 79, 31453162, https://doi.org/10.1175/JAS-D-22-0051.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, A., N. Mordant, A. Crawford, and E. Bodenschatz, 2005: On the distribution of Lagrangian accelerations in turbulent flows. New J. Phys., 7, 58, https://doi.org/10.1088/1367-2630/7/1/058.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1996: A Short Course in Cloud Physics. Elsevier Science, 304 pp.

  • Saito, I., T. Gotoh, and T. Watanabe, 2019: Broadening of cloud droplet size distributions by condensation in turbulence. J. Meteor. Soc. Japan, 97, 867891, https://doi.org/10.2151/jmsj.2019-049.

    • Search Google Scholar
    • Export Citation
  • Sardina, G., F. Picano, L. Brandt, and R. Caballero, 2015: Continuous growth of droplet size variance due to condensation in turbulent clouds. Phys. Rev. Lett., 115, 184501, https://doi.org/10.1103/PhysRevLett.115.184501.

    • Search Google Scholar
    • Export Citation
  • Shima, S., K. Kusano, A. Kawano, T. Sugiyama, and S. Kawahara, 2009: The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quart. J. Roy. Meteor. Soc., 135, 13071320, https://doi.org/10.1002/qj.441.

    • Search Google Scholar
    • Export Citation
  • Shraiman, B. I., and E. D. Siggia, 2000: Scalar turbulence. Nature, 405, 639646, https://doi.org/10.1038/35015000.

  • Siebert, H., and R. A. Shaw, 2017: Supersaturation fluctuations during the early stage of cumulus formation. J. Atmos. Sci., 74, 975988, https://doi.org/10.1175/JAS-D-16-0115.1.

    • Search Google Scholar
    • Export Citation
  • Siewert, C., J. Bec, and G. Krstulovic, 2017: Statistical steady state in turbulent droplet condensation. J. Fluid Mech., 810, 254280, https://doi.org/10.1017/jfm.2016.712.

    • Search Google Scholar
    • Export Citation
  • Sreenivasan, K. R., and J. Schumacher, 2010: Lagrangian views on turbulent mixing of passive scalars. Philos. Trans. Roy. Soc., A368, 15611577, https://doi.org/10.1098/rsta.2009.0140.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., 1979: The exponential Lagrangian correlation function and turbulent diffusion in the inertial subrange. Atmos. Environ., 13, 15651567, https://doi.org/10.1016/0004-6981(79)90066-0.

    • Search Google Scholar
    • Export Citation
  • Thomas, S., P. Prabhakaran, W. Cantrell, and R. A. Shaw, 2021: Is the water vapor supersaturation distribution Gaussian? J. Atmos. Sci., 78, 23852395, https://doi.org/10.1175/JAS-D-20-0388.1.

    • Search Google Scholar
    • Export Citation
  • Wunsch, S., and A. R. Kerstein, 2005: A stochastic model for high-Rayleigh-number convection. J. Fluid Mech., 528, 173205, https://doi.org/10.1017/S0022112004003258.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., W. Pennell, D. Lenschow, and M. A. LeMone, 1978: The temperature-humidity covariance budget in the convective boundary layer. J. Atmos. Sci., 35, 4758, https://doi.org/10.1175/1520-0469(1978)035<0047:TTHCBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yeung, P., 2002: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech., 34, 115142, https://doi.org/10.1146/annurev.fluid.34.082101.170725.

    • Search Google Scholar
    • Export Citation
  • Yeung, P., S. B. Pope, and B. L. Sawford, 2006: Reynolds number dependence of Lagrangian statistics in large numerical simulations of isotropic turbulence. J. Turbul., 7, N58, https://doi.org/10.1080/14685240600868272.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 323 323 109
Full Text Views 102 102 25
PDF Downloads 123 123 24