Microphysical Evolution in Mixed-Phase Midlatitude Marine Cold-Air Outbreaks

Seethala Chellappan aDepartment of Atmospheric Sciences, Rosenstiel School, University of Miami, Miami, Florida

Search for other papers by Seethala Chellappan in
Current site
Google Scholar
PubMed
Close
,
Paquita Zuidema aDepartment of Atmospheric Sciences, Rosenstiel School, University of Miami, Miami, Florida

Search for other papers by Paquita Zuidema in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4719-372X
,
Simon Kirschler bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Simon Kirschler in
Current site
Google Scholar
PubMed
Close
,
Christiane Voigt bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany

Search for other papers by Christiane Voigt in
Current site
Google Scholar
PubMed
Close
,
Brian Cairns cGoddard Institute for Space Studies, New York City, New York

Search for other papers by Brian Cairns in
Current site
Google Scholar
PubMed
Close
,
Ewan C. Crosbie dAnalytical Mechanics Associates, Hampton, Virginia

Search for other papers by Ewan C. Crosbie in
Current site
Google Scholar
PubMed
Close
,
Richard Ferrare eNASA Langley Research Center, Hampton, Virginia

Search for other papers by Richard Ferrare in
Current site
Google Scholar
PubMed
Close
,
Johnathan Hair eNASA Langley Research Center, Hampton, Virginia

Search for other papers by Johnathan Hair in
Current site
Google Scholar
PubMed
Close
,
David Painemal dAnalytical Mechanics Associates, Hampton, Virginia

Search for other papers by David Painemal in
Current site
Google Scholar
PubMed
Close
,
Taylor Shingler eNASA Langley Research Center, Hampton, Virginia

Search for other papers by Taylor Shingler in
Current site
Google Scholar
PubMed
Close
,
Michael Shook eNASA Langley Research Center, Hampton, Virginia

Search for other papers by Michael Shook in
Current site
Google Scholar
PubMed
Close
,
Kenneth L. Thornhill eNASA Langley Research Center, Hampton, Virginia

Search for other papers by Kenneth L. Thornhill in
Current site
Google Scholar
PubMed
Close
,
Florian Tornow cGoddard Institute for Space Studies, New York City, New York

Search for other papers by Florian Tornow in
Current site
Google Scholar
PubMed
Close
, and
Armin Sorooshian fDepartment of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona

Search for other papers by Armin Sorooshian in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Five cold-air outbreaks are investigated with aircraft offshore of continental northeast America. Flight paths aligned with the cloud-layer flow from January through March span cloud-top temperatures from −5° to −12°C, in situ liquid water paths of up to 500 g m−2, while in situ cloud droplet number concentrations exceeding 500 cm−3 maintain effective radii below 10 μm. Rimed ice is detected in the four colder cases within the first cloud pass. After further fetch, ice particle number concentrations reaching 2.5 L−1 support an interpretation that secondary ice production is occurring. Rime splintering is clearly evident, with dendritic growth increasing ice water contents within deeper clouds with colder cloud-top temperatures. Buoyancy fluxes reach 400–600 W m−2 near the Gulf Stream’s western edge, with 1-s updrafts reaching 5 m s−1 supporting closely spaced convective cells. Near-surface rainfall rates of the three more intense cold-air outbreaks are a maximum near the Gulf Stream’s eastern edge, just before the clouds transition to more open-celled structures. The milder two cold-air outbreaks transition to lower-albedo cumulus with little or no precipitation. The clouds thin through cloud-top entrainment.

Significance Statement

Cold-air outbreaks off of the eastern U.S. seaboard are visually spectacular in satellite imagery, with overcast, high-albedo clouds transitioning to more broken cloud fields. We use data from the recent NASA Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) aircraft campaign to examine the microphysics and environmental context of five such outbreaks. We find the clouds are not ice-deprived, but updrafts still supply significant liquid water. Cloud transitions are encouraged through near-surface rain for the deeper clouds, and otherwise, clouds thin and break through mixing in drier air from above. These observations support understanding and further modeling examining how mixed-phase cloud microphysics affect cloud reflectivity and surface rainfall rates, important for both weather and climate forecasting.

Chellappan’s current affiliation: Analytical Mechanics Associates, Inc., Hampton, Virginia.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Paquita Zuidema, pzuidema@miami.edu; Seethala Chellappan, seethala.chellappan@ymail.com

Abstract

Five cold-air outbreaks are investigated with aircraft offshore of continental northeast America. Flight paths aligned with the cloud-layer flow from January through March span cloud-top temperatures from −5° to −12°C, in situ liquid water paths of up to 500 g m−2, while in situ cloud droplet number concentrations exceeding 500 cm−3 maintain effective radii below 10 μm. Rimed ice is detected in the four colder cases within the first cloud pass. After further fetch, ice particle number concentrations reaching 2.5 L−1 support an interpretation that secondary ice production is occurring. Rime splintering is clearly evident, with dendritic growth increasing ice water contents within deeper clouds with colder cloud-top temperatures. Buoyancy fluxes reach 400–600 W m−2 near the Gulf Stream’s western edge, with 1-s updrafts reaching 5 m s−1 supporting closely spaced convective cells. Near-surface rainfall rates of the three more intense cold-air outbreaks are a maximum near the Gulf Stream’s eastern edge, just before the clouds transition to more open-celled structures. The milder two cold-air outbreaks transition to lower-albedo cumulus with little or no precipitation. The clouds thin through cloud-top entrainment.

Significance Statement

Cold-air outbreaks off of the eastern U.S. seaboard are visually spectacular in satellite imagery, with overcast, high-albedo clouds transitioning to more broken cloud fields. We use data from the recent NASA Aerosol Cloud Meteorology Interactions over the Western Atlantic Experiment (ACTIVATE) aircraft campaign to examine the microphysics and environmental context of five such outbreaks. We find the clouds are not ice-deprived, but updrafts still supply significant liquid water. Cloud transitions are encouraged through near-surface rain for the deeper clouds, and otherwise, clouds thin and break through mixing in drier air from above. These observations support understanding and further modeling examining how mixed-phase cloud microphysics affect cloud reflectivity and surface rainfall rates, important for both weather and climate forecasting.

Chellappan’s current affiliation: Analytical Mechanics Associates, Inc., Hampton, Virginia.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Paquita Zuidema, pzuidema@miami.edu; Seethala Chellappan, seethala.chellappan@ymail.com

Supplementary Materials

    • Supplemental Materials (PDF 6.3949 MB)
Save
  • Abel, S. J., and Coauthors, 2017: The role of precipitation in controlling the transition from stratocumulus to cumulus clouds in a Northern Hemisphere cold-air outbreak. J. Atmos. Sci., 74, 22932314, https://doi.org/10.1175/JAS-D-16-0362.1.

    • Search Google Scholar
    • Export Citation
  • Adebiyi, A. A., P. Zuidema, I. Chang, S. P. Burton, and B. Cairns, 2020: Mid-level clouds are frequent above the southeast Atlantic stratocumulus clouds. Atmos. Chem. Phys., 20, 11 02511 043, https://doi.org/10.5194/acp-20-11025-2020.

    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., B. Cairns, C. Emde, A. S. Ackerman, and B. van Diedenhoven, 2012: Accuracy assessments of cloud droplet size retrievals from polarized reflectance measurements by the research scanning polarimeter. Remote Sens. Environ., 125, 92111, https://doi.org/10.1016/j.rse.2012.07.012.

    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and Coauthors, 2015: Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX). Remote Sens. Environ., 169, 2036, https://doi.org/10.1016/j.rse.2015.07.029.

    • Search Google Scholar
    • Export Citation
  • Alexandrov, M. D., and Coauthors, 2018: Retrievals of cloud droplet size from the research scanning polarimeter data: Validation using in situ measurements. Remote Sens. Environ., 210, 7695, https://doi.org/10.1016/j.rse.2018.03.005.

    • Search Google Scholar
    • Export Citation
  • Atlas, R. L., C. S. Bretherton, M. F. Khairoutdinov, and P. N. Blossey, 2022: Hallett-Mossop rime splintering dims cumulus clouds over the southern ocean: New insight from nudged global storm-resolving simulations. AGU Adv., 3, e2021AV000454, https://doi.org/10.1029/2021AV000454.

    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, https://doi.org/10.1175/JAM2398.1.

    • Search Google Scholar
    • Export Citation
  • Bigg, E. K., 1953: The supercooling of water. Proc. Phys. Soc., 66B, 688694, https://doi.org/10.1088/0370-1301/66/8/309.

  • Cooper, W. A., 1986: Ice initiation in natural clouds. Precipitation Enhancement—A Scientific Challenge, Meteor. Monogr., No. 43, Amer. Meteor. Soc., 29–32, https://doi.org/10.1175/0065-9401-21.43.29.

  • Corral, A. F., and Coauthors, 2021: An overview of atmospheric features over the western North Atlantic Ocean and North American East Coast – Part 1: Analysis of aerosols, gases, and wet deposition chemistry. J. Geophys. Res. Atmos., 126, e2020JD032592, https://doi.org/10.1029/2020JD032592.

    • Search Google Scholar
    • Export Citation
  • Creamean, J. M., and Coauthors, 2022: Annual cycle observations of aerosols capable of ice formation in central Arctic clouds. Nat. Commun., 13, 35373549, https://doi.org/10.1038/s41467-022-31182-x.

    • Search Google Scholar
    • Export Citation
  • Dadashazar, H., and Coauthors, 2021: Cloud drop number concentrations over the western North Atlantic Ocean: Seasonal cycle, aerosol interrelationships, and other influential factors. Atmos. Chem. Phys., 21, 10 49910 526, https://doi.org/10.5194/acp-21-10499-2021.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2016: Sea spray aerosol as a unique source of ice nucleating particles. Proc. Natl. Acad. Sci. USA, 113, 57975803, https://doi.org/10.1073/pnas.1514034112.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and A. J. Heymsfield, 2015: Importance of snow to global precipitation. Geophys. Res. Lett., 42, 95129520, https://doi.org/10.1002/2015GL065497.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Exploring the convective grey zone with regional simulations of a cold air outbreak. Quart. J. Roy. Meteor. Soc., 143, 25372555, https://doi.org/10.1002/qj.3105.

    • Search Google Scholar
    • Export Citation
  • Fletcher, J. K., S. L. Mason, and C. Jakob, 2016: A climatology of clouds in marine cold air outbreaks in both hemispheres. J. Climate, 29, 66776692, https://doi.org/10.1175/JCLI-D-15-0783.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., and Coauthors, 2022: The COMBLE Campaign: A study of marine boundary layer clouds in Arctic cold-air outbreaks. Bull. Amer. Meteor. Soc., 103, E1371E1389, https://doi.org/10.1175/BAMS-D-21-0044.1.

    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., and Coauthors, 2019: Constraining the aerosol influence on cloud liquid water path. Atmos. Chem. Phys., 19, 53315347, https://doi.org/10.5194/acp-19-5331-2019.

    • Search Google Scholar
    • Export Citation
  • Gryspeerdt, E., and Coauthors, 2022: The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data. Atmos. Meas. Tech., 15, 38753892, https://doi.org/10.5194/amt-15-3875-2022.

    • Search Google Scholar
    • Export Citation
  • Haëck, C., M. Lévy, I. Mangolte, and L. Bopp, 2023: Satellite data reveal earlier and stronger phytoplankton blooms over fronts in the Gulf Stream region. Biogeosciences, 20, 17411758, https://doi.org/10.5194/bg-20-1741-2023.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Hu, Y., and Coauthors, 2009: CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Oceanic Technol., 26, 22932309, https://doi.org/10.1175/2009JTECHA1280.1.

    • Search Google Scholar
    • Export Citation
  • Irish, V. E., and Coauthors, 2019: Ice nucleating particles in the marine boundary layer in the Canadian Arctic during summer 2014. Atmos. Chem. Phys., 19, 10271039, https://doi.org/10.5194/acp-19-1027-2019.

    • Search Google Scholar
    • Export Citation
  • Järvinen, E., and Coauthors, 2022: Evidence for secondary ice production in Southern Ocean maritime boundary layer clouds. J. Geophys. Res. Atmos., 127, e2021JD036411, https://doi.org/10.1029/2021JD036411.

    • Search Google Scholar
    • Export Citation
  • Jonas, P. R., 1996: Turbulence and cloud microphysics. Atmos. Res., 40, 283306, https://doi.org/10.1016/0169-8095(95)00035-6.

  • Jones, C. R., C. S. Bretherton, and D. Leon, 2011: Coupled vs. decoupled boundary layers in VOCALS-REx. Atmos. Chem. Phys., 11, 71437153, https://doi.org/10.5194/acp-11-7143-2011.

    • Search Google Scholar
    • Export Citation
  • Kanji, Z. A., L. A. Ladino, H. Wex, Y. Boose, M. Burkert-Kohn, D. J. Cziczo, and M. Krämer, 2017: Overview of ice nucleating particles. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1.

  • Karalis, M., G. Sotiropoulou, S. J. Abel, E. Bossioli, P. Georgakaki, G. Methymaki, A. Nenes, and M. Tombrou, 2022: Effects of secondary ice processes on a stratocumulus to cumulus transition during a cold-air outbreak. Atmos. Res., 277, 106302, https://doi.org/10.1016/j.atmosres.2022.106302.

    • Search Google Scholar
    • Export Citation
  • Kirschler, S., and Coauthors, 2022: Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic. Atmos. Chem. Phys., 22, 82998319, https://doi.org/10.5194/acp-22-8299-2022.

    • Search Google Scholar
    • Export Citation
  • Kirschler, S., and Coauthors, 2023: Overview and statistical analysis of boundary layer clouds and precipitation over the western North-Atlantic ocean. Atmos. Chem. Phys., 23, 10 73110 750, https://doi.org/10.5194/acp-23-10731-2023.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and Coauthors, 2020: A new look at the environmental conditions favorable to secondary ice production. Atmos. Chem. Phys., 20, 13911429, https://doi.org/10.5194/acp-20-1391-2020.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., J. W. Strapp, and G. A. Isaac, 1998: Evaluation of the accuracy of PMS optical array probes. J. Atmos. Oceanic Technol., 15, 708720, https://doi.org/10.1175/1520-0426(1998)015<0708:EOTAOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lance, S., 2012: Coincidence errors in a cloud droplet probe (CDP) and a cloud and aerosol spectrometer (CAS), and the improved performance of a modified CDP. J. Atmos. Oceanic Technol., 29, 15321541, https://doi.org/10.1175/JTECH-D-11-00208.1.

    • Search Google Scholar
    • Export Citation
  • Liu, J., S. Xie, J. R. Norris, and S. Zhang, 2014: Low-level cloud response to the Gulf Stream front in winter using CALIPSO. J. Climate, 27, 44214432, https://doi.org/10.1175/JCLI-D-13-00469.1.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., F. Yang, P. Kollias, A. Vogelmann, and M. Maahn, 2021: New insights into ice multiplication using remote-sensing observations of slightly supercooled mixedphase clouds in the Arctic. Proc. Natl. Acad. Sci. USA, 118, e2021387118, https://doi.org/10.1073/pnas.2021387118.

    • Search Google Scholar
    • Export Citation
  • Matus, A. V., and T. S. L’Ecuyer, 2017: The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos., 122, 25592578, https://doi.org/10.1002/2016JD025951.

    • Search Google Scholar
    • Export Citation
  • McCluskey, C. S., and Coauthors, 2018: Observations of ice nucleating particles over southern ocean waters. Geophys. Res. Lett., 45, 11 98911 997, https://doi.org/10.1029/2018GL079981.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2021: Observations of clouds, aerosols, precipitation, and surface radiation over the southern ocean: An overview of CAPRICORN, MARCUS, MICRE and SOCRATES. Bull. Amer. Meteor. Soc., 102, E894E928, https://doi.org/10.1175/BAMS-D-20-0132.1.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 339, https://doi.org/10.1016/S0169-8095(97)00018-5.

    • Search Google Scholar
    • Export Citation
  • Minobe, S., A. Kuwano-Yoshida, N. Komori, S.-P. Xie, and R. J. Small, 2008: Influence of the Gulf Stream on the troposphere. Nature, 452, 206209, https://doi.org/10.1038/nature06690.

    • Search Google Scholar
    • Export Citation
  • Mülmenstädt, J., O. Sourdeval, J. Delano, and J. Quaas, 2015: Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals. Geophys. Res. Lett., 42, 65026509, https://doi.org/10.1002/2015GL064604.

    • Search Google Scholar
    • Export Citation
  • Murray-Watson, R. J., E. Gryspeerdt, and T. Goren, 2023: Investigating the development of clouds within marine cold air outbreaks. Atmos. Chem. Phys., 23, 93659383, https://doi.org/10.5194/acp-23-9365-2023.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., J. F. Booth, K. Lamer, R. Marchand, A. Protat, and G. McFarquhar, 2020: On the relationship between the marine cold air outbreak M parameter and low-level cloud heights in the midlatitudes. J. Geophys. Res. Atmos., 125, e2020JD032465, https://doi.org/10.1029/2020JD032465.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and P. Zuidema, 2011: Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in-situ measurements. J. Geophys. Res., 116, D24206, https://doi.org/10.1029/2011JD016155.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and Coauthors, 2021: Evaluation of satellite retrievals of liquid clouds from the GOES-13 imager and MODIS over the midlatitude North Atlantic during the NAAMES campaign. Atmos. Meas. Tech., 14, 66336646, https://doi.org/10.5194/amt-14-6633-2021.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., and Coauthors, 2023: Wintertime synoptic patterns of variability of midlatitude boundary layer clouds over the western North Atlantic: Climatology and insights from in-situ ACTIVATE observations. J. Geophys. Res. Atmos., 128, e2022JD037725, https://doi.org/10.1029/2022JD037725.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., S. Pfahl, H. Sodemann, and H. Wernli, 2015: A climatology of cold air outbreaks and their impact on air–sea heat fluxes in the high-latitude South Pacific. J. Climate, 28, 342364, https://doi.org/10.1175/JCLI-D-14-00482.1.

    • Search Google Scholar
    • Export Citation
  • Plagge, A., J. B. Edson, and D. Vandemark, 2016: In situ and satellite evaluation of air–sea flux variation near ocean temperature gradients. J. Climate, 29, 15831602, https://doi.org/10.1175/JCLI-D-15-0489.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Springer, 954 pp., https://doi.org/10.1007/978-0-306-48100-0.

  • Seethala, C., and Coauthors, 2021: On assessing ERA5 and MERRA2 representations of cold-air outbreaks across the Gulf Stream. Geophys. Res. Lett., 48, e2021GL094364, https://doi.org/10.1029/2021GL094364.

    • Search Google Scholar
    • Export Citation
  • Small, R. J., and Coauthors, 2008: Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274319, https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., and Coauthors, 2019: Aerosol-cloud-meteorology interaction airborne field investigations: Using lessons learned from the U.S. West Coast in the design of ACTIVATE off the East Coast. Bull. Amer. Meteor. Soc., 100, 15111528, https://doi.org/10.1175/BAMS-D-18-0100.1.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., and Coauthors, 2023: Spatially-coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: The NASA ACTIVATE dataset. Earth Syst. Sci. Data, 15, 34193472, https://doi.org/10.5194/essd-15-3419-2023.

    • Search Google Scholar
    • Export Citation
  • Sotiropoulou, G., S. Sullivan, J. Savre, G. Lloyd, T. Lachlan-Cope, A. Ekman, and A. Nenes, 2020: The impact of secondary ice production on Arctic stratocumulus. Atmos. Chem. Phys., 20, 13011316, https://doi.org/10.5194/acp-20-1301-2020.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., Y. Nagao, and Y. Kushiyama, 1995: Possible high ice particle production during graupel–graupel collisions. J. Atmos. Sci., 52, 45234527, https://doi.org/10.1175/1520-0469(1995)052<4523:PHIPPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thornhill, K. L., B. E. Anderson, J. Barrick, D. Bagwell, R. Friesen, and D. Lenschow, 2003: Air motion intercomparison flights during Transport and Chemical Evolution in the Pacific (TRACE-P)/ACE-ASIA. J. Geophys. Res., 108, 9001, https://doi.org/10.1029/2002JD003108.

    • Search Google Scholar
    • Export Citation
  • Tornow, F., and Coauthors, 2022: Dilution of boundary layer cloud condensation nucleus concentrations by free tropospheric entrainment during marine cold air outbreaks. Geophys. Res. Lett., 49, e2022GL098444, https://doi.org/10.1029/2022GL098444.

    • Search Google Scholar
    • Export Citation
  • Tornow, F., A. S. Ackerman, A. M. Fridlind, G. Tselioudis, B. Cairns, D. Painemal, and G. Elsaesser, 2023: On the impact of a dry intrusion driving cloud-regime transitions in a midlatitude cold-air outbreak. J. Atmos. Sci., 80, 28812896, https://doi.org/10.1175/JAS-D-23-0040.1.

    • Search Google Scholar
    • Export Citation
  • Vaillant de Guélis, T., A. Schwarzenböck, V. Shcherbakov, C. Gourbeyre, B. Laurent, R. Dupuy, P. Coutris, and C. Duroure, 2019: Study of the diffraction pattern of cloud particles and the respective responses of optical array probes. Atmos. Meas. Tech., 12, 25132529, https://doi.org/10.5194/amt-12-2513-2019.

    • Search Google Scholar
    • Export Citation
  • Vömel, H., A. Sorooshian, C. Robinson, T. J. Shingler, K. L. Thornhill, and L. D. Ziemba, 2023: Dropsonde observations during the aerosol cloud meteorology interactions over the western Atlantic experiment. Sci. Data, 10, 753, https://doi.org/10.1038/s41597-023-02647-5.

    • Search Google Scholar
    • Export Citation
  • Welti, A., and Coauthors, 2020: Ship-based measurements of ice nuclei concentrations over the Arctic, Atlantic, Pacific and Southern Oceans. Atmos. Chem. Phys., 20, 15 19115 206, https://doi.org/10.5194/acp-20-15191-2020.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., and Coauthors, 2019: The Arctic cloud puzzle: Using ACLOUD/PASCAL multiplatform observations to unravel the role of clouds and aerosol particles in Arctic amplification. Bull. Amer. Meteor. Soc., 100, 841871, https://doi.org/10.1175/BAMS-D-18-0072.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., 2005: Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. J. Atmos. Sci., 62, 30343050, https://doi.org/10.1175/JAS3530.1.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the Southeast Pacific. Atmos. Chem. Phys., 11, 23412370, https://doi.org/10.5194/acp-11-2341-2011.

    • Search Google Scholar
    • Export Citation
  • Young, G. S., D. A. R. Kristovich, M. R. Hjelmfelt, and R. C. Foster, 2002: Rolls, streets, waves, and more: A review of quasi-two-dimensional structures in the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 83, 9971002, https://doi.org/10.1175/1520-0477(2002)083<0997:RSWAMA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., R. M. Rauber, G. M. McFarquhar, P. J. DeMott, J. J. D’Alessandro, and W. Wu, 2021: Ice in southern ocean clouds with cloud top temperatures exceeding −5°C. J. Geophys. Res. Atmos., 126, e2021JD034574, https://doi.org/10.1029/2021JD034574.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and K. F. Evans, 1998: On the validity of the independent pixel approximation for boundary layer clouds observed during ASTEX. J. Geophys. Res., 103, 60596074, https://doi.org/10.1029/98JD00080.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., D. Painemal, S. de Szoeke, and C. Fairall, 2009: Stratocumulus cloud top height estimates and their climatic implications. J. Climate, 22, 46524666, https://doi.org/10.1175/2009JCLI2708.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 364 364 246
Full Text Views 146 146 86
PDF Downloads 180 180 102