Modeling Nonspherical Hailstones

Yuzhu Lin aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yuzhu Lin in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0009-0002-7801-793X
,
Matthew R. Kumjian aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Joshua Soderholm bRadar Science Group, Bureau of Meteorology, Melbourne, Victoria, Australia
cSchool of the Environment, University of Queensland, St Lucia, Queensland, Australia

Search for other papers by Joshua Soderholm in
Current site
Google Scholar
PubMed
Close
, and
Ian Giammanco dInsurance Institute for Business and Home Safety, Richburg, South Carolina

Search for other papers by Ian Giammanco in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Hail research and forecasting models necessarily involve explicit or implicit—and uncertain—physical assumptions regarding hailstones’ shape, tumbling behavior, fall speed, and thermal energy transfer. Whereas most models assume spherical hailstones, we relax this assumption by using hailstone shape data from field observations to establish empirical size–shape relationships with reasonable degrees of randomness considering hailstones’ natural shape variability, capturing the observed distribution of triaxial ellipsoidal shapes. We also incorporate explicit, random tumbling of individual hailstones during their growth to simulate their free-falling behavior and the resultant changes in cross-sectional area (which affects growth by hydrometeor collection). These physical attributes are incorporated in calculating hailstones’ fall speeds, using either empirical relationships or analytical relationships based on each hailstone’s Best and Reynolds numbers. Options for drag coefficient modification are added to emulate hailstones’ rough surfaces (lobes), which then modifies their thermal energy and vapor exchange with the environment. We investigate how applying these physical assumptions about nonspherical hail to the Penn State hail growth trajectory model, coupled with Cloud Model 1 supercell simulations, impacts hail production and examine the reasons behind the resulting variability in hail statistics. The choice of hailstone size–mass relation and fall speed scheme have the strongest influence on hail sizes. Using nonspherical, tumbling hailstones reduces the number of large hailstones produced. Applying shape-specific thermal energy transfer coefficients subtly increases sizes; the effects of lobes vary depending on the fall speed scheme used. These physical assumptions, although adding complexity to modeling, can be parameterized efficiently and potentially used in microphysics schemes.

Significance Statement

In numerical modeling of hailstorms, we usually consider hailstones to be spherical to simplify calculations, but in nature, hailstones generally are not spheres and can be rather lumpy and have spikes. The purpose of this study is to examine how the model result would change when nonspherical hailstone shape is implemented. We examine the relationship between hailstone shape and physical processes during hail growth in effort to explain why these changes occur and offer insights on how nonspherical hailstone shape may be parameterized in bulk microphysics schemes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuzhu Lin, yxl5930@psu.edu

Abstract

Hail research and forecasting models necessarily involve explicit or implicit—and uncertain—physical assumptions regarding hailstones’ shape, tumbling behavior, fall speed, and thermal energy transfer. Whereas most models assume spherical hailstones, we relax this assumption by using hailstone shape data from field observations to establish empirical size–shape relationships with reasonable degrees of randomness considering hailstones’ natural shape variability, capturing the observed distribution of triaxial ellipsoidal shapes. We also incorporate explicit, random tumbling of individual hailstones during their growth to simulate their free-falling behavior and the resultant changes in cross-sectional area (which affects growth by hydrometeor collection). These physical attributes are incorporated in calculating hailstones’ fall speeds, using either empirical relationships or analytical relationships based on each hailstone’s Best and Reynolds numbers. Options for drag coefficient modification are added to emulate hailstones’ rough surfaces (lobes), which then modifies their thermal energy and vapor exchange with the environment. We investigate how applying these physical assumptions about nonspherical hail to the Penn State hail growth trajectory model, coupled with Cloud Model 1 supercell simulations, impacts hail production and examine the reasons behind the resulting variability in hail statistics. The choice of hailstone size–mass relation and fall speed scheme have the strongest influence on hail sizes. Using nonspherical, tumbling hailstones reduces the number of large hailstones produced. Applying shape-specific thermal energy transfer coefficients subtly increases sizes; the effects of lobes vary depending on the fall speed scheme used. These physical assumptions, although adding complexity to modeling, can be parameterized efficiently and potentially used in microphysics schemes.

Significance Statement

In numerical modeling of hailstorms, we usually consider hailstones to be spherical to simplify calculations, but in nature, hailstones generally are not spheres and can be rather lumpy and have spikes. The purpose of this study is to examine how the model result would change when nonspherical hailstone shape is implemented. We examine the relationship between hailstone shape and physical processes during hail growth in effort to explain why these changes occur and offer insights on how nonspherical hailstone shape may be parameterized in bulk microphysics schemes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Yuzhu Lin, yxl5930@psu.edu

Supplementary Materials

    • Supplemental Materials (ZIP 240.34 MB)
Save
  • Adams-Selin, R., and C. L. Ziegler, 2016: Forecasting hail using a one-dimensional hail growth model within WRF. Mon. Wea. Rev., 144, 49194939, https://doi.org/10.1175/MWR-D-16-0027.1.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., A. J. Clark, C. J. Melick, S. R. Dembek, I. L. Jirak, and C. L. Ziegler, 2019: Evolution of WRF-HAILCAST during the 2014–16 NOAA/Hazardous weather testbed spring forecasting experiments. Wea. Forecasting, 34, 6179, https://doi.org/10.1175/WAF-D-18-0024.1.

    • Search Google Scholar
    • Export Citation
  • Allen, J. T., I. M. Giammanco, M. R. Kumjian, H. J. Punge, Q. Zhang, P. Groenemeijer, M. Kunz, and K. Ortega, 2020: Understanding hail in the Earth system. Rev. Geophys., 58, e2019RG000665, https://doi.org/10.1029/2019RG000665.

    • Search Google Scholar
    • Export Citation
  • Bagheri, G., and C. Bonadonna, 2016: On the drag of freely falling non-spherical particles. Powder Technol., 301, 526544, https://doi.org/10.1016/j.powtec.2016.06.015.

    • Search Google Scholar
    • Export Citation
  • Bailey, I. H., and W. C. Macklin, 1968a: Heat transfer from artificial hailstones. Quart. J. Roy. Meteor. Soc., 94, 9398, https://doi.org/10.1002/qj.49709439910.

    • Search Google Scholar
    • Export Citation
  • Bailey, I. H., and W. C. Macklin, 1968b: The surface configuration and internal structure of artificial hailstones. Quart. J. Roy. Meteor. Soc., 94 (399), 111, https://doi.org/10.1002/qj.49709439902.

    • Search Google Scholar
    • Export Citation
  • Balestra, G., D. M.-P. Nguyen, and F. Gallaire, 2018: Rayleigh-Taylor instability under a spherical substrate. Phys. Rev. Fluids, 3, 084005, https://doi.org/10.1103/PhysRevFluids.3.084005.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Wea. Rev., 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Search Google Scholar
    • Export Citation
  • Best, A. C., 1950: Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Quart. J. Roy. Meteor. Soc., 76, 302311, https://doi.org/10.1002/qj.49707632905.

    • Search Google Scholar
    • Export Citation
  • Brown, T. M., W. H. Pogorzelski, and I. M. Giammanco, 2015: Evaluating hail damage using property insurance claims data. Wea. Climate Soc., 7, 197210, https://doi.org/10.1175/WCAS-D-15-0011.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1966: The lobe structure of giant hailstones. Quart. J. Roy. Meteor. Soc., 92, 114, https://doi.org/10.1002/qj.49709239102.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Çengel, Y. A., 2002: Heat and Mass Transfer. 2nd ed. McGraw-Hill, 874 pp.

  • Chao, Y., L. Zhu, and H. Yuan, 2021: Rayleigh-Taylor instability of viscous liquid films under a temperature-controlled inclined substrate. Phys. Rev. Fluids, 6, 064001, https://doi.org/10.1103/PhysRevFluids.6.064001.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-P., and D. Lamb, 1994: The theoretical basis for the parameterization of ice crystal habits: Growth by vapor deposition. J. Atmos. Sci., 51, 12061222, https://doi.org/10.1175/1520-0469(1994)051<1206:TTBFTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Das, P., 1962: Influence of wind shear on the growth of hail. J. Atmos. Sci., 19, 407414, https://doi.org/10.1175/1520-0469(1962)019<0407:IOWSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dennis, E. J., and M. R. Kumjian, 2017: The impact of vertical wind shear on hail growth in simulated supercells. J. Atmos. Sci., 74, 641663, https://doi.org/10.1175/JAS-D-16-0066.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Coauthors, 2022: The High-Resolution Rapid Refresh (HRRR): An hourly updating convection-allowing forecast model. Part I: Motivation and system description. Wea. Forecasting, 37, 13711395, https://doi.org/10.1175/WAF-D-21-0151.1.

    • Search Google Scholar
    • Export Citation
  • Eng Young, R. G., and K. A. Browning, 1967: Wind tunnel tests of simulated spherical hailstones with variable roughness. J. Atmos. Sci., 24, 5862, https://doi.org/10.1175/1520-0469(1967)024<0058:WTTOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eure, K. C., P. D. Mykolajtchuk, Y. Zhang, D. J. Stensrud, F. Zhang, S. J. Greybush, and M. R. Kumjian, 2023: Simultaneous assimilation of planetary boundary layer observations from radar and all-sky satellite observations to improve forecasts of convection initiation. Mon. Wea. Rev., 151, 795813, https://doi.org/10.1175/MWR-D-22-0188.1.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, https://doi.org/10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gallo, B., A. J. Clark, B. T. Smith, R. L. Thompson, I. Jirak, and S. R. Dembek, 2019: Incorporating UH occurrence time to ensemble-derived tornado probabilities. Wea. Forecasting, 34, 151164, https://doi.org/10.1175/WAF-D-18-0108.1.

    • Search Google Scholar
    • Export Citation
  • García-García, F., and R. List, 1992: Laboratory measurements and parameterizations of supercooled water skin temperatures and bulk properties of gyrating hailstones. J. Atmos. Sci., 49, 20582073, https://doi.org/10.1175/1520-0469(1992)049<2058:LMAPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giammanco, I. M., B. R. Maiden, H. E. Estes, and T. M. Brown-Giammanco, 2017: Using 3D laser scanning technology to create digital models of hailstones. Bull. Amer. Meteor. Soc., 98, 13411347, https://doi.org/10.1175/BAMS-D-15-00314.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., and R. Wright, 2014: Graupel and hail terminal velocities: Does a “supercritical” Reynolds number apply? J. Atmos. Sci., 71, 33923403, https://doi.org/10.1175/JAS-D-14-0034.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., M. Szakáll, A. Jost, I. Giammanco, and R. Wright, 2018: A comprehensive observational study of graupel and hail terminal velocity, mass flux, and kinetic energy. J. Atmos. Sci., 75, 38613885, https://doi.org/10.1175/JAS-D-18-0035.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A., M. Szakáll, A. Jost, I. Giammanco, R. Wright, and J. Brimelow, 2020: Corrigendum. J. Atmos. Sci., 77, 405412, https://doi.org/10.1175/JAS-D-19-0185.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1982: A comparative study of the rates of development of potential graupel and hail embryos in high plains storms. J. Atmos. Sci., 39, 28672897, https://doi.org/10.1175/1520-0469(1982)039<2867:ACSOTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1983a: Case-study of a hailstorm in Colorado. Part IV: Graupel and hail growth mechanisms deduced through particle trajectory calculations. J. Atmos. Sci., 40, 14821509, https://doi.org/10.1175/1520-0469(1983)040<1482:CSOAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1983b: A technique for investigating graupel and hail development. J. Climate Appl. Meteor., 22, 11431160, https://doi.org/10.1175/1520-0450(1983)022<1143:ATFIGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and J. C. Pflaum, 1985: A quantitative assessment of the accuracy of techniques for calculating graupel growth. J. Atmos. Sci., 42, 22642274, https://doi.org/10.1175/1520-0469(1985)042<2264:AQAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, A. A., and J. Y. Harrington, 2015: Modeling ice crystal aspect ratio evolution during riming: A single-particle growth model. J. Atmos. Sci., 72, 25692590, https://doi.org/10.1175/JAS-D-14-0297.1.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., 1991: Comments on “physics of supercooling of thin water skins covering gyrating hailstones”. J. Atmos. Sci., 48, 217218, https://doi.org/10.1175/1520-0469(1991)048<0217:COOSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1970a: The falling behavior of hailstones. J. Atmos. Sci., 27, 672681, https://doi.org/10.1175/1520-0469(1970)027<0672:TFBOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 1970b: Lobe structures of hailstones. J. Atmos. Sci., 27, 667671, https://doi.org/10.1175/1520-0469(1970)027<0667:LSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and N. C. Knight, 2005: Very large hailstones from Aurora, Nebraska. Bull. Amer. Meteor. Soc., 86, 17731782, https://doi.org/10.1175/BAMS-86-12-1773.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., 1986: Hailstone shape factor and its relation to radar interpretation of hail. J. Climate Appl. Meteor., 25, 19561958, https://doi.org/10.1175/1520-0450(1986)025<1956:HSFAIR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., and A. J. Heymsfield, 1983: Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 15101516, https://doi.org/10.1175/1520-0469(1983)040<1510:MAIOHD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kray, T., J. Franke, and W. Frank, 2012: Magnus effect on a rotating sphere at high Reynolds numbers. J. Wind Eng. Ind. Aerodyn., 110, 19, https://doi.org/10.1016/j.jweia.2012.07.005.

    • Search Google Scholar
    • Export Citation
  • Kry, P. R., and R. List, 1974: Angular motions of freely falling spheroidal hailstone models. Phys. Fluids, 17, 10931102, https://doi.org/10.1063/1.1694848.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and K. Lombardo, 2020: A hail growth trajectory model for exploring the environmental controls on hail size: Model physics and idealized tests. J. Atmos. Sci., 77, 27652791, https://doi.org/10.1175/JAS-D-20-0016.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., K. A. Lombardo, and S. Loeffler, 2021: The evolution of hail production in simulated supercell storms. J. Atmos. Sci., 78, 34173440, https://doi.org/10.1175/JAS-D-21-0034.1.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Lesins, G. B., and R. List, 1986: Sponginess and drop shedding of gyrating hailstones in a pressure-controlled icing wind tunnel. J. Atmos. Sci., 43, 28132825, https://doi.org/10.1175/1520-0469(1986)043<2813:SADSOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and M. R. Kumjian, 2022: Influences of CAPE on hail production in simulated supercell storms. J. Atmos. Sci., 79, 179204, https://doi.org/10.1175/JAS-D-21-0054.1.

    • Search Google Scholar
    • Export Citation
  • List, R., 1961: Physical methods and instruments for characterizing hailstones. Bull. Amer. Meteor. Soc., 42, 452466, https://doi.org/10.1175/1520-0477-42.7.452.

    • Search Google Scholar
    • Export Citation
  • List, R., 1990: Physics of supercooling of thin water skins covering gyrating hailstones. J. Atmos. Sci., 47, 19191925, https://doi.org/10.1175/1520-0469(1990)047<1919:POSOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • List, R., 1991: Reply. J. Atmos. Sci., 48, 219220, https://doi.org/10.1175/1520-0469(1991)048<0219:R>2.0.CO;2.

  • List, R., U. W. Rentsch, A. C. Byram, and E. P. Lozowski, 1973: On the aerodynamics of spheroidal hailstone models. J. Atmos. Sci., 30, 653661, https://doi.org/10.1175/1520-0469(1973)030<0653:OTAOSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1962: Accretion in mixed clouds the density and structure of ice formed by accretion. Quart. J. Roy. Meteor. Soc., 88, 342343, https://doi.org/10.1002/qj.49708837719.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1963: Heat transfer from hailstones. Quart. J. Roy. Meteor. Soc., 89, 360369, https://doi.org/10.1002/qj.49708938107.

    • Search Google Scholar
    • Export Citation
  • Macklin, W. C., 1977: The characteristics of natural hailstones and their interpretation. Hail: A Review of Hail Science and Hail Suppression, S. W. Borland et al., Eds., Amer. Meteor. Soc., 65–91.

  • Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. J. Atmos. Sci., 67, 30843094, https://doi.org/10.1175/2010JAS3341.1.

    • Search Google Scholar
    • Export Citation
  • Matson, R. J., and A. W. Huggins, 1980: The direct measurement of the sizes, shapes, and kinematics of falling hailstones. J. Atmos. Sci., 37, 11071125, https://doi.org/10.1175/1520-0469(1980)037<1107:TDMOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and P. Zhang, 2022: Freezing dynamics of supercooled micro-sized water droplets. Int. J. Heat Mass Transf., 193, 122955, https://doi.org/10.1016/j.ijheatmasstransfer.2022.122955.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, https://doi.org/10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., Jr., 1972: On the growth of large hail. Mon. Wea. Rev., 100, 196205, https://doi.org/10.1175/1520-0493(1972)100<0196:OTGOLH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287311, https://doi.org/10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., 1978: Size sorting of hail in a three-dimensional updraft and implications for hail suppression. J. Appl. Meteor., 17, 763777, https://doi.org/10.1175/1520-0450(1978)017<0763:SSOHIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pflaum, J. C., 1984: New clues for decoding hailstone structure. Bull. Amer. Meteor. Soc., 65, 583593, https://doi.org/10.1175/1520-0477(1984)065<0583:NCFDHS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pflaum, J. C., and H. R. Pruppacher, 1979: A wind tunnel investigation of the growth of graupel initiated from frozen drops. J. Atmos. Sci., 36, 680689, https://doi.org/10.1175/1520-0469(1979)036<0680:AWTIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., A. Khain, N. Benmoshe, and E. Ilotoviz, 2014: Theory of time-dependent freezing. Part I: Description of scheme for wet growth of hail. J. Atmos. Sci., 71, 45274557, https://doi.org/10.1175/JAS-D-13-0375.1.

    • Search Google Scholar
    • Export Citation
  • Phillips, V. T. J., and Coauthors, 2017: Ice multiplication by breakup in ice–ice collisions. Part II: Numerical simulations. J. Atmos. Sci., 74, 27892811, https://doi.org/10.1175/JAS-D-16-0223.1.

    • Search Google Scholar
    • Export Citation
  • Pounds, L., 2022: Hailstone trajectory and surface hailfall analysis in the 29-30 May 2012 Kingfisher, OK supercell. M.S. thesis, Dept. of Meteorology, University of Oklahoma, 154 pp.

  • Prodi, F., 1970: Measurements of local density in artificial and natural hailstones. J. Appl. Meteor., 9, 903910, https://doi.org/10.1175/1520-0450(1970)009<0903:MOLDIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prodi, F., G. Santachiara, and A. Franzini, 1986: Properties of ice accreted in two-stage growth. Quart. J. Roy. Meteor. Soc., 112, 10571080, https://doi.org/10.1002/qj.49711247408.

    • Search Google Scholar
    • Export Citation
  • Ranz, W. E., and W. R. Marshall Jr., 1952: Evaporation from drops. Part I. Chem. Eng. Prog., 48, 141146.

  • Rasmussen, R. M., and H. R. Pruppacher, 1982: A wind tunnel and theoretical study of the melting behavior of atmospheric ice particles. I: A wind tunnel study of frozen drops of radius < 500 μm. J. Atmos. Sci., 39, 152158, https://doi.org/10.1175/1520-0469(1982)039<0152:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1985: A generalized form for impact velocities used to determine graupel accretional densities. J. Atmos. Sci., 42, 22752279, https://doi.org/10.1175/1520-0469(1985)042<2275:AGFFIV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and A. J. Heymsfield, 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, https://doi.org/10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., V. Levizzani, and H. R. Pruppacher, 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles. III. Experiment and theory for spherical ice particles of radius > 500 μm. J. Atmos. Sci., 41, 381388, https://doi.org/10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reyssat, É., F. Chevy, A.-L. Biance, L. Petitjean, and D. Quéré, 2007: Shape and instability of free-falling liquid globules. Europhys. Lett., 80, 34005, https://doi.org/10.1209/0295-5075/80/34005.

    • Search Google Scholar
    • Export Citation
  • Roos, D. S., 1972: A giant hailstone from Kansas in free fall. J. Appl. Meteor., 11, 10081011, https://doi.org/10.1175/1520-0450(1972)011<1008:AGHFKI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roos, D. S., and A. E. Carte, 1973: The falling behavior of oblate and spiky hailstones. J. Rech. Atmos., 7, 3952.

  • Schuepp, P. H., and R. List, 1969: Mass transfer of rough hailstone models in flows of various turbulence levels. J. Appl. Meteor., 8, 254263, https://doi.org/10.1175/1520-0450(1969)008<0254:MTORHM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shedd, L., M. R. Kumjian, I. Giammanco, T. Brown-Giammanco, and B. Ross Maiden, 2021: Hailstone shapes. J. Atmos. Sci., 78, 639652, https://doi.org/10.1175/JAS-D-20-0250.1.

    • Search Google Scholar
    • Export Citation
  • Snook, N. X., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016: Prediction and ensemble forecast verification of hail in the supercell storms of 20 May 2013. Wea. Forecasting, 31, 811825, https://doi.org/10.1175/WAF-D-15-0152.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., G. S. Romine, and C. S. Schwartz, 2020: A comparison of neural-network and surrogate-severe probabilistic convective hazard guidance derived from a convection-allowing model. Wea. Forecasting, 35, 19812000, https://doi.org/10.1175/WAF-D-20-0036.1.

    • Search Google Scholar
    • Export Citation
  • Soderholm, J. S., and M. R. Kumjian, 2023: Automating the analysis of hailstone layers. Atmos. Meas. Tech., 16, 695706, https://doi.org/10.5194/amt-16-695-2023.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871500, https://doi.org/10.1175/2009BAMS2795.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and R. List, 1983: Gyrational motion of disks during free-fall. Phys. Fluids, 26, 920927, https://doi.org/10.1063/1.864241.

    • Search Google Scholar
    • Export Citation
  • Sun, M., W. Kong, F. Wang, and H. Liu, 2019: Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution. Int. J. Heat Mass Transf., 142, 118431, https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.081.

    • Search Google Scholar
    • Export Citation
  • Theis, A., S. Borrmann, S. K. Mitra, A. J. Heymsfield, and M. A. Szakàll, 2020: A wind tunnel investigation into the aerodynamics of lobed hailstones. Atmosphere, 11, 494, https://doi.org/10.3390/atmos11050494.

    • Search Google Scholar
    • Export Citation
  • Theiss, A., and S. Hein, 2017: Investigation on the wake flow instability behind isolated roughness elements on the forebody of a blunt generic reentry capsule. Progress in Flight Physics, D. Knight et al., Eds., EDP Sciences, 451–480.

  • Wadell, H., 1935: Volume, shape, and roundness of quartz particles. J. Geol., 43, 250280, https://doi.org/10.1086/624298.

  • Wang, P. K., and C.-C. Chueh, 2020: A numerical study on the ventilation coefficients of falling lobed hailstones. Atmos. Res., 234, 104737, https://doi.org/10.1016/j.atmosres.2019.104737.

    • Search Google Scholar
    • Export Citation
  • Waugh, S. M., K. L. Ortega, and J. C. Snyder, 2022: Automated processing of hailstones in free-fall using a high-speed, high-resolution, dual camera imager. 2022 Second North American Workshop on Hail & Hailstorms, Boulder, CO, National Center for Atmosphere Research, Recorded Presentation, P3.2, https://cpaess.ucar.edu/sites/default/files/2022-09/Hail-workshop-agendaV2.pdf.

  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, https://doi.org/10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willis, J. T., K. A. Browning, and D. Atlas, 1964: Radar observations of ice spheres in free fall. J. Atmos. Sci., 21, 103108, https://doi.org/10.1175/1520-0469(1964)021<0103:ROOISI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Woods, C. P., M. T. Stoelinga, J. D. Locatelli, and P. V. Hobbs, 2005: Microphysical processes and synergistic interaction between frontal and orographic forcing of precipitation during the 13 December 2001 IMPROVE-2 event over the Oregon cascades. J. Atmos. Sci., 62, 34933519, https://doi.org/10.1175/JAS3550.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., D. J. Stensrud, and F. Zhang, 2019: Simultaneous assimilation of radar and all-sky satellite infrared radiance observations for convection-allowing ensemble analysis and prediction of severe thunderstorms. Mon. Wea. Rev., 147, 43894409, https://doi.org/10.1175/MWR-D-19-0163.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., P. S. Ray, and N. C. Knight, 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6609 6609 3074
Full Text Views 387 387 84
PDF Downloads 309 309 53