Exploring the Differences in Kinetic Energy Spectra between the NCEP FNL and ERA5 Datasets

Zongheng Li aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Zongheng Li in
Current site
Google Scholar
PubMed
Close
,
Jun Peng aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Jun Peng in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-4585-036X
,
Lifeng Zhang aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Lifeng Zhang in
Current site
Google Scholar
PubMed
Close
, and
Jiping Guan aCollege of Meteorology and Oceanography, National University of Defense Technology, Changsha, China

Search for other papers by Jiping Guan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Two global atmospheric circulation datasets (ERA5 and NCEP FNL) with horizontal resolutions of 0.25° × 0.25° are investigated in terms of kinetic energy (KE) spectra at 200 hPa (roughly between 11 and 12 km). The horizontal KE (HKE) in NCEP FNL is larger and flatter than that in ERA5 at subsynoptic scales and mesoscales. Restoring the energy of this wavenumber range to the physical space shows that the HKE in NCEP FNL is larger than that in ERA5 over most areas but smaller mainly in the Indo-Pacific warm pool. The spectral budgets show that at these scales, the positive contribution from net vertical flux in ERA5 is stronger than that in NCEP FNL, while the negative contribution from available potential energy (APE) conversion is smaller; assuming that the atmosphere is in a quasi-stationary state, more dissipation is found in ERA5 than in NCEP FNL, which should be responsible for the HKE spectrum in ERA5 to be steeper and weaker than that in NCEP FNL. Our formulation shows that the APE conversion and net vertical flux are related to the pressure vertical velocity (PVV). The APE conversion and net vertical flux differences between the two datasets, like the PVV difference, are mainly from the tropical region. At large scales, the vertical motion in ERA5 is larger than that in NCEP FNL. The amplitude differences of the PVV spectra between two datasets are consistent with those of the large-scale precipitation spectra associated with microphysics parameterizations. These results support that vertical motion is a key dynamical factor explaining energy discrepancies at mesoscales.

Significance Statement

The atmospheric kinetic energy spectrum reflects energy distribution characteristics in atmospheric motion at different scales. According to the Helmholtz decomposition, the horizontal wind field can be decomposed into two parts: rotational wind field and divergent wind field. We explore the dynamical causes of the atmospheric energy spectra differences among different datasets from the perspective of rotational and divergent components of motion. Our results reveal that the differences in energy spectra and their energy budget at scales below a few hundred kilometers are relatively significant in tropical regions and are closely related to vertical motion. A better understanding of the differences in kinetic energy spectra will contribute to the improvement of atmospheric models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jun Peng, pengjun@nudt.edu.cn; Lifeng Zhang, zhanglif_qxxy@sina.cn

Abstract

Two global atmospheric circulation datasets (ERA5 and NCEP FNL) with horizontal resolutions of 0.25° × 0.25° are investigated in terms of kinetic energy (KE) spectra at 200 hPa (roughly between 11 and 12 km). The horizontal KE (HKE) in NCEP FNL is larger and flatter than that in ERA5 at subsynoptic scales and mesoscales. Restoring the energy of this wavenumber range to the physical space shows that the HKE in NCEP FNL is larger than that in ERA5 over most areas but smaller mainly in the Indo-Pacific warm pool. The spectral budgets show that at these scales, the positive contribution from net vertical flux in ERA5 is stronger than that in NCEP FNL, while the negative contribution from available potential energy (APE) conversion is smaller; assuming that the atmosphere is in a quasi-stationary state, more dissipation is found in ERA5 than in NCEP FNL, which should be responsible for the HKE spectrum in ERA5 to be steeper and weaker than that in NCEP FNL. Our formulation shows that the APE conversion and net vertical flux are related to the pressure vertical velocity (PVV). The APE conversion and net vertical flux differences between the two datasets, like the PVV difference, are mainly from the tropical region. At large scales, the vertical motion in ERA5 is larger than that in NCEP FNL. The amplitude differences of the PVV spectra between two datasets are consistent with those of the large-scale precipitation spectra associated with microphysics parameterizations. These results support that vertical motion is a key dynamical factor explaining energy discrepancies at mesoscales.

Significance Statement

The atmospheric kinetic energy spectrum reflects energy distribution characteristics in atmospheric motion at different scales. According to the Helmholtz decomposition, the horizontal wind field can be decomposed into two parts: rotational wind field and divergent wind field. We explore the dynamical causes of the atmospheric energy spectra differences among different datasets from the perspective of rotational and divergent components of motion. Our results reveal that the differences in energy spectra and their energy budget at scales below a few hundred kilometers are relatively significant in tropical regions and are closely related to vertical motion. A better understanding of the differences in kinetic energy spectra will contribute to the improvement of atmospheric models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Jun Peng, pengjun@nudt.edu.cn; Lifeng Zhang, zhanglif_qxxy@sina.cn
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Asselin, O., P. Bartello, and D. N. Straub, 2016a: On quasigeostrophic dynamics near the tropopause. Phys. Fluids, 28, 026601, https://doi.org/10.1063/1.4941761.

    • Search Google Scholar
    • Export Citation
  • Asselin, O., P. Bartello, and D. N. Straub, 2016b: Boussinesq dynamics of an idealized tropopause. Eighth Int. Symp. on Stratified Flows, San Diego, CA, IAHR.

  • Auger, J. D., S. D. Birkel, K. A. Maasch, P. A. Mayewski, and K. C. Schuenemann, 2018: An ensemble mean and evaluation of third generation global climate reanalysis models. Atmosphere, 9, 236, https://doi.org/10.3390/atmos9060236.

    • Search Google Scholar
    • Export Citation
  • Augier, P., and E. Lindborg, 2013: A new formulation of the spectral energy budget of the atmosphere, with application to two high-resolution general circulation models. J. Atmos. Sci., 70, 22932308, https://doi.org/10.1175/JAS-D-12-0281.1.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., 1995: Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci., 52, 44104428, https://doi.org/10.1175/1520-0469(1995)052<4410:GAAICI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bartello, P., 2010: Quasigeostrophic and stratified turbulence in the atmosphere. Proc. Symp. on Turbulence in the Atmosphere and Oceans, Cambridge, UK, IUTAM, 117–130.

  • Boer, G. J., and T. G. Shepherd, 1983: Large-scale two-dimensional turbulence in the atmosphere. J. Atmos. Sci., 40, 164184, https://doi.org/10.1175/1520-0469(1983)040<0164:LSTDTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bolgiani, P., and Coauthors, 2022: Wind kinetic energy climatology and effective resolution for the ERA5 reanalysis. Climate Dyn., 59, 737752, https://doi.org/10.1007/s00382-022-06154-y.

    • Search Google Scholar
    • Export Citation
  • Brune, S., and E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci., 70, 231247, https://doi.org/10.1175/JAS-D-12-025.1.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., J. Callies, and R. Ferrari, 2014: Wave–vortex decomposition of one-dimensional ship-track data. J. Fluid Mech., 756, 10071026, https://doi.org/10.1017/jfm.2014.488.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 10871095, https://doi.org/10.1175/1520-0469(1971)028<1087:GT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J.-H., S.-J. Lin, L. Zhou, X. Chen, S. Rees, M. Bender, and M. Morin, 2019: Evaluation of tropical cyclone forecasts in the Next Generation Global Prediction System. Mon. Wea. Rev., 147, 34093428, https://doi.org/10.1175/MWR-D-18-0227.1.

    • Search Google Scholar
    • Export Citation
  • Cho, J. Y. N., and Coauthors, 1999: Horizontal wavenumber spectra of winds, temperature, and trace gases during the Pacific Exploratory Missions: 1. Climatology. J. Geophys. Res., 104, 56975716, https://doi.org/10.1029/98JD01825.

    • Search Google Scholar
    • Export Citation
  • Fjørtoft, R., 1953: On the changes in the spectral distribution of kinetic energy for two-dimensional, nondivergent flow. Tellus, 5, 225230, https://doi.org/10.3402/tellusa.v5i3.8647.

    • Search Google Scholar
    • Export Citation
  • Fujiwara, M., and Coauthors, 2017: Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems. Atmos. Chem. Phys., 17, 14171452, https://doi.org/10.5194/acp-17-1417-2017.

    • Search Google Scholar
    • Export Citation
  • Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution global general circulation model. J. Geophys. Res., 113, D18110, https://doi.org/10.1029/2008JD009785.

    • Search Google Scholar
    • Export Citation
  • Han, J., W. Wang, Y. C. Kwon, S.-Y. Hong, V. Tallapragada, and F. Yang, 2017: Updates in the NCEP GFS cumulus convection schemes with scale and aerosol awareness. Wea. Forecasting, 32, 20052017, https://doi.org/10.1175/WAF-D-17-0046.1.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., M. Bender, M. Morin, L. Harris, and S.-J. Lin, 2018: 2017 Atlantic hurricane forecasts from a high-resolution version of the GFDL fvGFS model: Evaluation of track, intensity, and structure. Wea. Forecasting, 33, 13171337, https://doi.org/10.1175/WAF-D-18-0056.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., and R. Spang, 2022: An assessment of tropopause characteristics of the ERA5 and ERA-Interim meteorological reanalyses. Atmos. Chem. Phys., 22, 40194046, https://doi.org/10.5194/acp-22-4019-2022.

    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., and P. Bartello, 2018: Spontaneous imbalance in the non-hydrostatic Boussinesq equations. J. Fluid Mech., 847, 614643, https://doi.org/10.1017/jfm.2018.338.

    • Search Google Scholar
    • Export Citation
  • Kafiabad, H. A., M. Savva, and J. Vanneste, 2019: Diffusion of inertia-gravity waves by geostrophic turbulence. J. Fluid Mech., 869, R7, https://doi.org/10.1017/jfm.2019.300.

    • Search Google Scholar
    • Export Citation
  • Klaver, R., R. Haarsma, P. L. Vidale, and W. Hazeleger, 2020: Effective resolution in high resolution global atmospheric models for climate studies. Atmos. Sci. Lett., 21, e952, https://doi.org/10.1002/asl.952.

    • Search Google Scholar
    • Export Citation
  • Koshyk, J. N., and K. Hamilton, 2001: The horizontal kinetic energy spectrum and spectral budget simulated by a high-resolution troposphere–stratosphere–mesosphere GCM. J. Atmos. Sci., 58, 329348, https://doi.org/10.1175/1520-0469(2001)058<0329:THKESA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kraichnan, R. H., 1967: Inertial ranges in two-dimensional turbulence. Phys. Fluids, 10, 14171423, https://doi.org/10.1063/1.1762301.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., Z. Rulfová, A. Farda, and M. Hanel, 2016: Convective and stratiform precipitation characteristics in an ensemble of regional climate model simulations. Climate Dyn., 46, 227243, https://doi.org/10.1007/s00382-015-2580-7.

    • Search Google Scholar
    • Export Citation
  • Li, Z., J. Peng, and L. Zhang, 2023: Spectral budget of rotational and divergent kinetic energy in global analyses. J. Atmos. Sci., 80, 813831, https://doi.org/10.1175/JAS-D-21-0332.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 1999: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? J. Fluid Mech., 388, 259288, https://doi.org/10.1017/S0022112099004851.

    • Search Google Scholar
    • Export Citation
  • Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207242, https://doi.org/10.1017/S0022112005008128.

    • Search Google Scholar
    • Export Citation
  • Malardel, S., and N. P. Wedi, 2016: How does subgrid-scale parametrization influence nonlinear spectral energy fluxes in global NWP models? J. Geophys. Res. Atmos., 121, 53955410, https://doi.org/10.1002/2015JD023970.

    • Search Google Scholar
    • Export Citation
  • Martineau, P., S.-W. Son, M. Taguchi, and A. H. Butler, 2018: A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events. Atmos. Chem. Phys., 18, 71697187, https://doi.org/10.5194/acp-18-7169-2018.

    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2019: The influence of gravity waves on the slope of the kinetic energy spectrum in simulations of idealized midlatitude cyclones. J. Atmos. Sci., 76, 21032122, https://doi.org/10.1175/JAS-D-18-0329.1.

    • Search Google Scholar
    • Export Citation
  • Morfa, Y. A., and C. C. Stephan, 2023: The relationship between horizontal and vertical velocity wavenumber spectra in global storm-resolving simulations. J. Atmos. Sci., 80, 10871105, https://doi.org/10.1175/JAS-D-22-0105.1.

    • Search Google Scholar
    • Export Citation
  • Müller, S. K., E. Manzini, M. Giorgetta, K. Sato, and T. Nasuno, 2018: Convectively generated gravity waves in high resolution models of tropical dynamics. J. Adv. Model. Earth Syst., 10, 25642588, https://doi.org/10.1029/2018MS001390.

    • Search Google Scholar
    • Export Citation
  • Nastrom, G. D., and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950960, https://doi.org/10.1175/1520-0469(1985)042<0950:ACOAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NCEP, 2015: NCEP GDAS/FNL 0.25 degree global tropospheric analyses and forecast grids. NCAR RDA, accessed 9 October 2023, https://doi.org/10.5065/D65Q4T4Z.

  • Peng, J., L. Zhang, Y. Luo, and Y. Zhang, 2014a: Mesoscale energy spectra of the mei-yu front system. Part I: Kinetic energy spectra. J. Atmos. Sci., 71, 3755, https://doi.org/10.1175/JAS-D-13-085.1.

    • Search Google Scholar
    • Export Citation
  • Peng, J., L. Zhang, Y. Luo, and C. Xiong, 2014b: Mesoscale energy spectra of the mei-yu front system. Part II: Moist available potential energy spectra. J. Atmos. Sci., 71, 14101424, https://doi.org/10.1175/JAS-D-13-0319.1.

    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., N. Wedi, and Y.-H. Kim, 2022: Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization. Quart. J. Roy. Meteor. Soc., 148, 233251, https://doi.org/10.1002/qj.4202.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and E. Lindborg, 2008: Stratified turbulence: A possible interpretation of some geophysical turbulence measurements. J. Atmos. Sci., 65, 24162424, https://doi.org/10.1175/2007JAS2455.1.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 2019: The horizontal spectrum of vertical velocities near the tropopause from global to gravity wave scales. J. Atmos. Sci., 76, 38473862, https://doi.org/10.1175/JAS-D-19-0160.1.

    • Search Google Scholar
    • Export Citation
  • Sharman, R. D., S. B. Trier, T. P. Lane, and J. D. Doyle, 2012: Sources and dynamics of turbulence in the upper troposphere and lower stratosphere: A review. Geophys. Res. Lett., 39, L12803, https://doi.org/10.1029/2012GL051996.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., S.-H. Park, J. B. Klemp, and C. Snyder, 2014: Atmospheric kinetic energy spectra from global high-resolution nonhydrostatic simulations. J. Atmos. Sci., 71, 43694381, https://doi.org/10.1175/JAS-D-14-0114.1.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., C. Strube, D. Klocke, M. Ern, L. Hoffmann, P. Preusse, and H. Schmidt, 2019: Gravity waves in global high‐resolution simulations with explicit and parameterized convection. J. Geophys. Res. Atmos., 124, 44464459, https://doi.org/10.1029/2018JD030073.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., and Coauthors, 2022: Atmospheric energy spectra in global kilometre-scale models. Tellus, 74A, 280299, https://doi.org/10.16993/tellusa.26.

    • Search Google Scholar
    • Export Citation
  • Sun, Y. Q., R. Rotunno, and F. Zhang, 2017: Contributions of moist convection and internal gravity waves to building the atmospheric −5/3 kinetic energy spectra. J. Atmos. Sci., 74, 185201, https://doi.org/10.1175/JAS-D-16-0097.1.

    • Search Google Scholar
    • Export Citation
  • Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. Geophys. Res. Lett., 33, L12812, https://doi.org/10.1029/2006GL026429.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and X. Li, 2016: The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems. J. Geophys. Res. Atmos., 121, 62996320, https://doi.org/10.1002/2015JD024267.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1993: Representation of clouds in large-scale models. Mon. Wea. Rev., 121, 30403061, https://doi.org/10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torralba, V., F. J. Doblas-Reyes, and N. Gonzalez-Reviriego, 2017: Uncertainty in recent near-surface wind speed trends: A global reanalysis intercomparison. Environ. Res. Lett., 12, 114019, https://doi.org/10.1088/1748-9326/aa8a58.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, https://doi.org/10.1073/pnas.0605494103.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450467, https://doi.org/10.1175/2008JAS2653.1.

    • Search Google Scholar
    • Export Citation
  • Tung, K. K., and W. W. Orlando, 2003: The k−3 and k−5/3 energy spectrum of atmospheric turbulence: Quasigeostrophic two-level model simulation. J. Atmos. Sci., 60, 824835, https://doi.org/10.1175/1520-0469(2003)060<0824:TKAKES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • VanZandt, T. E., 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett., 9, 575578, https://doi.org/10.1029/GL009i005p00575.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., 2016: Dependence of model energy spectra on vertical resolution. Mon. Wea. Rev., 144, 14071421, https://doi.org/10.1175/MWR-D-15-0316.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and P. Bartello, 2006: The transition from geostrophic to stratified turbulence. J. Fluid Mech., 568, 89108, https://doi.org/10.1017/S0022112006002060.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2013: Mesoscale energy spectra of moist baroclinic waves. J. Atmos. Sci., 70, 12421256, https://doi.org/10.1175/JAS-D-11-0347.1.

    • Search Google Scholar
    • Export Citation
  • Waite, M. L., and C. Snyder, 2014: Comments on “Indications of stratified turbulence in a mechanistic GCM.” J. Atmos. Sci., 71, 854857, https://doi.org/10.1175/JAS-D-13-0176.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and O. Bühler, 2020: Ageostrophic corrections for power spectra and wave–vortex decomposition. J. Fluid Mech., 882, A16, https://doi.org/10.1017/jfm.2019.815.

    • Search Google Scholar
    • Export Citation
  • Wang, J.-W. A., and P. D. Sardeshmukh, 2021: Inconsistent global kinetic energy spectra in reanalyses and models. J. Atmos. Sci., 78, 25892603, https://doi.org/10.1175/JAS-D-20-0294.1.

    • Search Google Scholar
    • Export Citation
  • Wedi, N. P., and Coauthors, 2020: A baseline for global weather and climate simulations at 1 km resolution. J. Adv. Model. Earth Syst., 12, e2020MS002192, https://doi.org/10.1029/2020MS002192.

    • Search Google Scholar
    • Export Citation
  • Weyn, J. A., and D. R. Durran, 2017: The dependence of the predictability of mesoscale convective systems on the horizontal scale and amplitude of initial errors in idealized simulations. J. Atmos. Sci., 74, 21912210, https://doi.org/10.1175/JAS-D-17-0006.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., S. He, and Q. Bao, 2021: Convective/large-scale rainfall partitions of tropical heavy precipitation in CMIP6 atmospheric models. Adv. Atmos. Sci., 38, 10201027, https://doi.org/10.1007/s00376-021-0238-4.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., D. Jelić, M. Blaauw, and P. Bechtold, 2017: Energy spectra and inertia–gravity waves in global analyses. J. Atmos. Sci., 74, 24472466, https://doi.org/10.1175/JAS-D-16-0341.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 342 342 74
Full Text Views 139 139 46
PDF Downloads 165 165 53