Characteristics of Generating Cells in Wintertime Orographic Clouds

Sarah A. Tessendorf aResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Sarah A. Tessendorf in
Current site
Google Scholar
PubMed
Close
,
Kyoko Ikeda aResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Kyoko Ikeda in
Current site
Google Scholar
PubMed
Close
,
Roy M. Rasmussen aResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy M. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Jeffrey French bDepartment of Atmospheric Sciences, University of Wyoming, Laramie, Wyoming

Search for other papers by Jeffrey French in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber cDepartment of Climate, Meteorology, and Atmospheric Sciences, University of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
Alexei Korolev dEnvironment and Climate Change Canada, Toronto, Ontario, Canada

Search for other papers by Alexei Korolev in
Current site
Google Scholar
PubMed
Close
,
Lulin Xue aResearch Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Derek R. Blestrud eIdaho Power Company, Boise, Idaho

Search for other papers by Derek R. Blestrud in
Current site
Google Scholar
PubMed
Close
,
Nicholas Dawson eIdaho Power Company, Boise, Idaho

Search for other papers by Nicholas Dawson in
Current site
Google Scholar
PubMed
Close
,
Melinda Meadows eIdaho Power Company, Boise, Idaho

Search for other papers by Melinda Meadows in
Current site
Google Scholar
PubMed
Close
,
Melvin L. Kunkel eIdaho Power Company, Boise, Idaho

Search for other papers by Melvin L. Kunkel in
Current site
Google Scholar
PubMed
Close
, and
Shaun Parkinson eIdaho Power Company, Boise, Idaho

Search for other papers by Shaun Parkinson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

During the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE) field campaign, cloud-top generating cells were frequently observed in the very high-resolution W-band airborne cloud radar data. This study examines multiple flight segments from three SNOWIE cases that exhibited cloud-top generating cells structures, focusing on the in situ measurements inside and outside these cells to characterize the microphysics of these cells. The observed generating cells in these three cases occurred in cloud tops of −15° to −30°C, with and without overlying cloud layers, but always with shallow layers of atmospheric instability observed at cloud top. The results also indicate that liquid water content, vertical velocity, and drizzle and ice crystal concentrations are greater inside the generating cells compared to the adjacent portions of the cloud. The generating cells were predominantly <500 m in horizontal width and frequently exhibited drizzle drops coexisting with ice. The particle imagery indicates that ice particle habits included plates, columns, and rimed and irregular crystals, likely formed via primary ice nucleation mechanisms. Understanding the sources of natural ice formation is important to understanding precipitation formation in winter orographic clouds, and is especially relevant for clouds that may be targeted for glaciogenic cloud seeding as well as to improve model representation of these clouds.

Significance Statement

This study presents the characteristics of cloud-top generating cells in winter orographic clouds, and documents that fine-scale generating cells are ubiquitous in clouds over complex terrain in addition to having been observed in other types of clouds. The generating cells exhibited enhanced concentrations of larger drizzle and ice particles, which suggests the environments of these fine-scale features promote ice formation and growth. The source of ice formation in winter clouds is critical to understanding and modeling the precipitation formation process. Given the ubiquity of cloud-top generating cells in many types of clouds around the world, this study further motivates the need to investigate methods for representing subgrid-scale environments to improve ice formation in numerical models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah A. Tessendorf, saraht@ucar.edu

Abstract

During the Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment (SNOWIE) field campaign, cloud-top generating cells were frequently observed in the very high-resolution W-band airborne cloud radar data. This study examines multiple flight segments from three SNOWIE cases that exhibited cloud-top generating cells structures, focusing on the in situ measurements inside and outside these cells to characterize the microphysics of these cells. The observed generating cells in these three cases occurred in cloud tops of −15° to −30°C, with and without overlying cloud layers, but always with shallow layers of atmospheric instability observed at cloud top. The results also indicate that liquid water content, vertical velocity, and drizzle and ice crystal concentrations are greater inside the generating cells compared to the adjacent portions of the cloud. The generating cells were predominantly <500 m in horizontal width and frequently exhibited drizzle drops coexisting with ice. The particle imagery indicates that ice particle habits included plates, columns, and rimed and irregular crystals, likely formed via primary ice nucleation mechanisms. Understanding the sources of natural ice formation is important to understanding precipitation formation in winter orographic clouds, and is especially relevant for clouds that may be targeted for glaciogenic cloud seeding as well as to improve model representation of these clouds.

Significance Statement

This study presents the characteristics of cloud-top generating cells in winter orographic clouds, and documents that fine-scale generating cells are ubiquitous in clouds over complex terrain in addition to having been observed in other types of clouds. The generating cells exhibited enhanced concentrations of larger drizzle and ice particles, which suggests the environments of these fine-scale features promote ice formation and growth. The source of ice formation in winter clouds is critical to understanding and modeling the precipitation formation process. Given the ubiquity of cloud-top generating cells in many types of clouds around the world, this study further motivates the need to investigate methods for representing subgrid-scale environments to improve ice formation in numerical models.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sarah A. Tessendorf, saraht@ucar.edu
Save
  • American Meteorological Society, 2023: Generating cell. Glossary of Meteorology, https://glossary.ametsoc.org/wiki/Generating_cell.

  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899, https://doi.org/10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Bergeron, T., 1935: On the physics of cloud and precipitation. Proc. Fifth Assembly of the Int. Union of Geodesy and Geophysics, Lisbon, Portugal, UGGI, 156–173.

  • Bernstein, B. C., R. M. Rasmussen, F. McDonough, and C. Wolff, 2019: Keys to differentiating between small- and large-drop icing conditions in continental clouds. J. Appl. Meteor. Climatol., 58, 19311953, https://doi.org/10.1175/JAMC-D-18-0038.1.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and A. R. Bohne, 1975: Cellular snow generation—A Doppler radar study. J. Atmos. Sci., 32, 13841394, https://doi.org/10.1175/1520-0469(1975)032<1384:CSGDRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2023: Mixed-phase direct numerical simulation: Ice growth in cloud-top generating cells. Atmos. Chem. Phys., 23, 52175231, https://doi.org/10.5194/acp-23-5217-2023.

    • Search Google Scholar
    • Export Citation
  • Ciesielski, P. E., P. T. Haertel, R. H. Johnson, J. Wang, and S. M. Loehrer, 2012: Developing high-quality field program sounding datasets. Bull. Amer. Meteor. Soc., 93, 325336, https://doi.org/10.1175/BAMS-D-11-00091.1.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., and Coauthors, 2010: Predicting global atmospheric ice nuclei distributions and their impact on climate. Proc. Natl. Acad. Sci. USA, 107, 11 21711 222, https://doi.org/10.1073/pnas.0910818107.

    • Search Google Scholar
    • Export Citation
  • Evans, A. G., J. D. Locatelli, M. T. Stoelinga, and P. V. Hobbs, 2005: The IMPROVE-1 storm of 1–2 February 2001. Part II: Cloud structures and the growth of precipitation. J. Atmos. Sci., 62, 34563473, https://doi.org/10.1175/JAS3547.1.

    • Search Google Scholar
    • Export Citation
  • Faber, S., J. R. French, and R. Jackson, 2018: Laboratory and in-flight evaluation of measurement uncertainties from a commercial Cloud Droplet Probe (CDP). Atmos. Meas. Tech., 11, 36453659, https://doi.org/10.5194/amt-11-3645-2018.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and Coauthors, 2017: Secondary ice production: Current state of the science and recommendations for the future. Ice Formation and Evolution in Clouds and Precipitation: Measurement and Modeling Challenges, Meteor. Monogr., No. 58, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1.

  • Findeisen, W., 1938: Die kolloidmeteorologischen Vorgänge bei der Niederschlagsbildung (Colloidal meteorological processes in the formation of precipitation). Meteor. Z., 55, 121133.

    • Search Google Scholar
    • Export Citation
  • Fletcher, N. H., 1962: The Physics of Rain Clouds. Cambridge University Press, 386 pp.

  • Hallett, J., and S. C. Mossop, 1974: Production of secondary ice particles during the riming process. Nature, 249, 2628, https://doi.org/10.1038/249026a0.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., T. J. Matejka, P. H. Herzegh, J. D. Locatelli, and R. A. Houze Jr., 1980: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front. J. Atmos. Sci., 37, 568596, https://doi.org/10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., S. A. Rutledge, T. J. Matejka, and P. V. Hobbs, 1981: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. III: Air motions and precipitation growth in a warm-frontal rainband. J. Atmos. Sci., 38, 639649, https://doi.org/10.1175/1520-0469(1981)038<0639:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., R. M. Rasmussen, W. D. Hall, and G. Thompson, 2007: Observations of freezing drizzle in extratropical cyclonic storms during IMPROVE-2. J. Atmos. Sci., 64, 30163043, https://doi.org/10.1175/JAS3999.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016a: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, https://doi.org/10.1175/JAS-D-15-0126.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016b: Dynamics of cloud-top generating cells in winter cyclones. Part II: Radiative and instability forcing. J. Atmos. Sci., 73, 15291553, https://doi.org/10.1175/JAS-D-15-0127.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2017: Dynamics of cloud-top generating cells in winter cyclones. Part III: Shear and convective organization. J. Atmos. Sci., 74, 28792897, https://doi.org/10.1175/JAS-D-16-0314.1.

    • Search Google Scholar
    • Export Citation
  • Keinert, A., D. Spannagel, T. Leisner, and A. Kiselev, 2020: Secondary ice production upon freezing of freely falling drizzle droplets. J. Atmos. Sci., 77, 29592967, https://doi.org/10.1175/JAS-D-20-0081.1.

    • Search Google Scholar
    • Export Citation
  • Kleinheins, J., A. Kiselev, A. Keinert, M. Kind, and T. Leisner, 2021: Thermal imaging of freezing drizzle droplets: Pressure release events as a source of secondary ice particles. J. Atmos. Sci., 78, 17031713, https://doi.org/10.1175/JAS-D-20-0323.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and P. R. Field, 2015: Assessment of the performance of the inter-arrival time algorithm to identify ice shattering artifacts in cloud particle probe measurements. Atmos. Meas. Tech., 8, 761777, https://doi.org/10.5194/amt-8-761-2015.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., and T. Leisner, 2020: Review of experimental studies of secondary ice production. Atmos. Chem. Phys., 20, 11 76711 797, https://doi.org/10.5194/acp-20-11767-2020.

    • Search Google Scholar
    • Export Citation
  • Korolev, A., E. Emery, and K. Creelman, 2013: Modification and tests of particle probe tips to mitigate effects of ice shattering. J. Atmos. Oceanic Technol., 30, 690708, https://doi.org/10.1175/JTECH-D-12-00142.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, https://doi.org/10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, https://doi.org/10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Lauber, A., A. Kiselev, T. Pander, P. Handmann, and T. Leisner, 2018: Secondary ice formation during freezing of levitated droplets. J. Atmos. Sci., 75, 28152826, https://doi.org/10.1175/JAS-D-18-0052.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., D. O’Connor, P. Zmarzly, K. Weaver, B. A. Baker, Q. Mo, and H. Jonsson, 2006: The 2D-S (stereo) probe: Design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe. J. Atmos. Oceanic Technol., 23, 14621477, https://doi.org/10.1175/JTECH1927.1.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., F. Yang, P. Kollias, A. M. Vogelmann, and M. Maahn, 2021: New insights into ice multiplication using remote-sensing observations of slightly supercooled mixed-phase clouds in the Arctic. Proc. Natl. Acad. Sci. USA, 118, e2021387118, https://doi.org/10.1073/pnas.2021387118.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ. Ser. 7, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., 1953: Precipitation trajectories and patterns. J. Meteor., 10, 2529, https://doi.org/10.1175/1520-0469(1953)010<0025:PTAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi‐Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201, https://doi.org/10.1175/2010BAMS2935.1.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1992: New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, https://doi.org/10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, https://doi.org/10.1175/JAS-D-14-0354.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic, 954 pp.

  • Rauber, R. M., and A. Tokay, 1991: An explanation for the existence of supercooled water at the top of cold clouds. J. Atmos. Sci., 48, 10051023, https://doi.org/10.1175/1520-0469(1991)048<1005:AEFTEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., M. K. Macomber, D. M. Plummer, A. A. Rosenow, G. M. McFarquhar, B. F. Jewett, D. Leon, and J. M. Keeler, 2014: Finescale radar and airmass structure of the comma head of a continental winter cyclone: The role of three airstreams. Mon. Wea. Rev., 142, 42074229, https://doi.org/10.1175/MWR-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., and Coauthors, 2015: The role of cloud‐top generating cells and boundary layer circulations in the finescale radar structure of a winter cyclone over the Great Lakes. Mon. Wea. Rev., 143, 22912318, https://doi.org/10.1175/MWR-D-14-00350.1.

    • Search Google Scholar
    • Export Citation
  • Rauber, R. M., S. M. Ellis, J. Vivekanandan, J. Stith, W.-C. Lee, G. M. McFarquhar, B. F. Jewett, and A. Janiszeski, 2017: Finescale structure of a snowstorm over the northeastern United States: A first look at high-resolution HIAPER cloud radar observations. Bull. Amer. Meteor. Soc., 98, 253269, https://doi.org/10.1175/BAMS-D-15-00180.1.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, https://doi.org/10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2019: Transformational approach to winter orographic weather modification research: The SNOWIE project. Bull. Amer. Meteor. Soc., 100, 7192, https://doi.org/10.1175/BAMS-D-17-0152.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., and Coauthors, 2021: Differentiating freezing drizzle and freezing rain in HRRR model forecasts. Wea. Forecasting, 36, 12371251, https://doi.org/10.1175/WAF-D-20-0138.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2020: Microphysical properties of generating cells over the Southern Ocean: Results from SOCRATES. J. Geophys. Res. Atmos., 125, e2019JD032237, https://doi.org/10.1029/2019JD032237.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and Coauthors, 2012: Single aircraft integration of remote sensing and in situ sampling for the study of cloud microphysics and dynamics. Bull. Amer. Meteor. Soc., 93, 653668, https://doi.org/10.1175/BAMS-D-11-00044.1.

    • Search Google Scholar
    • Export Citation
  • Wegener, A., 1911: Thermodynamik der Atmosphäre. Barth, 331 pp.

  • Wexler, R., and D. Atlas, 1959: Precipitation generating cells. J. Meteor., 16, 327332, https://doi.org/10.1175/1520-0469(1959)016<0327:PGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zaremba, T. J., and Coauthors, 2022: Vertical motions in orographic cloud systems over the Payette River basin. Part II: Fixed and transient updrafts and their relationship to forcing. J. Appl. Meteor. Climatol., 61, 17331751, https://doi.org/10.1175/JAMC-D-21-0229.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 306 306 33
Full Text Views 130 130 11
PDF Downloads 155 155 17