Diurnally Varying Ekman Layer in a Rossby Wave

Alan Shapiro aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Alan Shapiro in
Current site
Google Scholar
PubMed
Close
,
Jason Chiappa aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jason Chiappa in
Current site
Google Scholar
PubMed
Close
, and
David B. Parsons aSchool of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by David B. Parsons in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Weak but persistent synoptic-scale ascent may play a role in the initiation or maintenance of nocturnal convection over the central United States. An analytical model is used to explore the nocturnal low-level jets (NLLJ) and ascent that develop in an idealized diurnally varying frictional (Ekman) boundary layer in a neutrally stratified barotropic environment when the flow aloft is a zonally propagating Rossby wave. Steady-periodic solutions are obtained of the linearized Reynolds-averaged Boussinesq-approximated equations of motion on a beta plane with an eddy viscosity that is specified to increase abruptly at sunrise and decrease abruptly at sunset. Rayleigh damping terms are used to parameterize momentum loss due to radiation of inertia–gravity waves. The model-predicted vertical velocity is (approximately) proportional to the wavenumber and wave amplitude. There are two main modes of ascent in midlatitudes, an afternoon mode and a nocturnal mode. The latter arises as a gentle but persistent surge induced by the decrease of turbulence at sunset, the same mechanism that triggers inertial oscillations in the Blackadar theory of NLLJs. If the Rayleigh damping terms are omitted, the boundary layer depth becomes infinite at three critical latitudes, and the vertical velocity becomes infinite far above the ground at two of those latitudes. With the damping terms retained, the solution is well behaved. Peak daytime ascent in the model occurs progressively later in the afternoon at more southern locations (in the Northern Hemisphere) until the first (most northern) critical latitude is reached; south of that latitude the nocturnal mode is dominant.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Shapiro, ashapiro@ou.edu

Abstract

Weak but persistent synoptic-scale ascent may play a role in the initiation or maintenance of nocturnal convection over the central United States. An analytical model is used to explore the nocturnal low-level jets (NLLJ) and ascent that develop in an idealized diurnally varying frictional (Ekman) boundary layer in a neutrally stratified barotropic environment when the flow aloft is a zonally propagating Rossby wave. Steady-periodic solutions are obtained of the linearized Reynolds-averaged Boussinesq-approximated equations of motion on a beta plane with an eddy viscosity that is specified to increase abruptly at sunrise and decrease abruptly at sunset. Rayleigh damping terms are used to parameterize momentum loss due to radiation of inertia–gravity waves. The model-predicted vertical velocity is (approximately) proportional to the wavenumber and wave amplitude. There are two main modes of ascent in midlatitudes, an afternoon mode and a nocturnal mode. The latter arises as a gentle but persistent surge induced by the decrease of turbulence at sunset, the same mechanism that triggers inertial oscillations in the Blackadar theory of NLLJs. If the Rayleigh damping terms are omitted, the boundary layer depth becomes infinite at three critical latitudes, and the vertical velocity becomes infinite far above the ground at two of those latitudes. With the damping terms retained, the solution is well behaved. Peak daytime ascent in the model occurs progressively later in the afternoon at more southern locations (in the Northern Hemisphere) until the first (most northern) critical latitude is reached; south of that latitude the nocturnal mode is dominant.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alan Shapiro, ashapiro@ou.edu
Save
  • Agee, E. M., D. E. Brown, T. S. Chen, and K. E. Dowell, 1973: A height-dependent model of eddy viscosity in the planetary boundary layer. J. Appl. Meteor., 12, 409412, https://doi.org/10.1175/1520-0450(1973)012<0409:AHDMOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Åkerblom, F., 1908: Rechercher sur les courants le plus bas de l’atmosphere au-dessus de Paris. Nova Acta Regiae Soc. Sci. Ups., 2, 203251.

    • Search Google Scholar
    • Export Citation
  • Ashkenazy, Y., 2017: Energy transfer of surface wind-induced currents to the deep ocean via resonance with the Coriolis force. J. Mar. Syst., 167, 93104, https://doi.org/10.1016/j.jmarsys.2016.11.019.

    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. Klein Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, https://doi.org/10.1175/2009JAMC1965.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, https://doi.org/10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290, https://doi.org/10.1175/1520-0477-38.5.283.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1966: Case study of thunderstorm activity in relation to the low-level jet. Mon. Wea. Rev., 94, 167178, https://doi.org/10.1175/1520-0493(1966)094<0167:CSOTAI>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, https://doi.org/10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., S. Esbensen, and R. Greenberg, 1968: Kinematics of the low-level jet. J. Appl. Meteor., 7, 339347, https://doi.org/10.1175/1520-0450(1968)007<0339:KOTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buajitti, K., and A. K. Blackadar, 1957: Theoretical studies of diurnal wind-structure variations in the planetary boundary layer. Quart. J. Roy. Meteor. Soc., 83, 486500, https://doi.org/10.1002/qj.49708335804.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., and J. D. Tuttle, 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, https://doi.org/10.1175/2008JCLI2275.1.

    • Search Google Scholar
    • Export Citation
  • Carroll, B. J., B. B. Demoz, and R. Delgado, 2019: An overview of low-level jet winds and corresponding mixed layer depths during PECAN. J. Geophys. Res. Atmos., 124, 91419160, https://doi.org/10.1029/2019JD030658.

    • Search Google Scholar
    • Export Citation
  • Chereskin, T. K., 1995: Direct evidence for an Ekman balance in the California Current. J. Geophys. Res., 100, 18 26118 269, https://doi.org/10.1029/95JC02182.

    • Search Google Scholar
    • Export Citation
  • Constantin, A., and R. S. Johnson, 2019: Atmospheric Ekman flows with variable eddy viscosity. Bound.-Layer Meteor., 170, 395414, https://doi.org/10.1007/s10546-018-0404-0.

    • Search Google Scholar
    • Export Citation
  • Craig, P. D., 1989: A model of diurnally forced vertical current structure near 30° latitude. Cont. Shelf Res., 9, 965980, https://doi.org/10.1016/0278-4343(89)90002-2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 63776402, https://doi.org/10.1029/98JD02720.

    • Search Google Scholar
    • Export Citation
  • Dandou, A., M. Tombrou, K. Schäfer, S. Emeis, A. P. Protonotariou, E. Bossioli, N. Soulakellis, and P. Suppan, 2009: A comparison between modelled and measured mixing-layer height over Munich. Bound.-Layer Meteor., 131, 425440, https://doi.org/10.1007/s10546-009-9373-7.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., 1985: The energy flux from the wind to near-inertial motions in the surface mixed layer. J. Phys. Oceanogr., 15, 10431059, https://doi.org/10.1175/1520-0485(1985)015<1043:TEFFTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, C. A. Paulson, P. Niiler, and P. V. Meurs, 1995: Upper-ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936, https://doi.org/10.1175/1520-0485(1995)025<2909:UOICFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Defant, F., 1949: Zur theorie der Hangwinde, nebst Bemerkungen zur theorie der Berg- und Talwinde. Arch. Meteor. Geophys. Bioklimatol., A1, 421450, https://doi.org/10.1007/BF02247634.

    • Search Google Scholar
    • Export Citation
  • Easterling, D. R., and P. J. Robinson, 1985: The diurnal variation of thunderstorm activity in the United States. J. Climate Appl. Meteor., 24, 10481058, https://doi.org/10.1175/1520-0450(1985)024<1048:TDVOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the Earth’s rotation on ocean-currents. Arch. Math. Astron. Phys., 2 (11), 152.

  • Fearon, G., S. Herbette, J. Veitch, G. Cambon, A. J. Lucas, F. Lemarié, and M. Vichi, 2020: Enhanced vertical mixing in coastal upwelling systems driven by diurnal-inertial resonance: Numerical experiments. J. Geophys. Res. Oceans, 125, e2020JC016208, https://doi.org/10.1029/2020JC016208.

    • Search Google Scholar
    • Export Citation
  • Gebauer, J. G., A. Shapiro, E. Fedorovich, and P. Klein, 2018: Convection initiation caused by heterogeneous low-level jets over the Great Plains. Mon. Wea. Rev., 146, 26152637, https://doi.org/10.1175/MWR-D-18-0002.1.

    • Search Google Scholar
    • Export Citation
  • Gough, M. K., A. J. H. M. Reniers, J. H. MacMahan, and S. D. Howden, 2016: Resonant near-surface inertial oscillations in the northeastern Gulf of Mexico. J. Geophys. Res. Oceans, 121, 21632182, https://doi.org/10.1002/2015JC011372.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L. Andreas, and P. S. Guest, 2005: Stable boundary-layer scaling regimes: The SHEBA data. Bound.-Layer Meteor., 116, 201235, https://doi.org/10.1007/s10546-004-2729-0.

    • Search Google Scholar
    • Export Citation
  • Grazzini, F., G. Fragkoulidis, F. Teubler, V. Wirth, and G. C. Craig, 2021: Extreme precipitation events over northern Italy. Part II: Dynamical precursors. Quart. J. Roy. Meteor. Soc., 147, 12371257, https://doi.org/10.1002/qj.3969.

    • Search Google Scholar
    • Export Citation
  • Gustafson, K. E., 1987: Introduction to Partial Differential Equations and Hilbert Space Methods. 2nd ed. John Wiley and Sons, 409 pp.

  • Haurwitz, B., 1940: The motion of atmospheric disturbances. J. Mar. Res., 3, 3550.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, https://doi.org/10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K., 1966: Ekman drift currents in the Arctic Ocean. Deep-Sea Res., 13, 607620, https://doi.org/10.1016/0011-7471(66)90592-4.

    • Search Google Scholar
    • Export Citation
  • Hyder, P., J. H. Simpson, J. Xing, and S. T. Gille, 2011: Observations over an annual cycle and simulations of wind-forced oscillations near the critical latitude for diurnal-inertial resonance. Cont. Shelf Res., 31, 15761591, https://doi.org/10.1016/j.csr.2011.06.001.

    • Search Google Scholar
    • Export Citation
  • Ingel’, L. K., 2015: One type of resonance phenomena in the atmosphere and water bodies. Fluid Dyn., 50, 494500, https://doi.org/10.1134/S0015462815040043.

    • Search Google Scholar
    • Export Citation
  • Jeričević, A., and Ž. Večenaj, 2009: Improvement of vertical diffusion analytic schemes under stable atmospheric conditions. Bound.-Layer Meteor., 131, 293307, https://doi.org/10.1007/s10546-009-9367-5.

    • Search Google Scholar
    • Export Citation
  • Jia, M., and Coauthors, 2019: Long-lived high-frequency gravity waves in the atmospheric boundary layer: Observations and simulations. Atmos. Chem. Phys., 19, 15 43115 446, https://doi.org/10.5194/acp-19-15431-2019.

    • Search Google Scholar
    • Export Citation
  • Jing, Z., L. Wu, and X. Ma, 2017: Energy exchange between the mesoscale oceanic eddies and wind-forced near-inertial oscillations. J. Phys. Oceanogr., 47, 721733, https://doi.org/10.1175/JPO-D-16-0214.1.

    • Search Google Scholar
    • Export Citation
  • Kallistratova, M. A., and R. D. Kouznetsov, 2012: Low-level jets in the Moscow region in summer and winter observed with a Sodar network. Bound.-Layer Meteor., 143, 159175, https://doi.org/10.1007/s10546-011-9639-8.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., and G. Crawford, 2014: Resonant ocean current responses driven by coastal winds near the critical latitude. Geophys. Res. Lett., 41, 55815587, https://doi.org/10.1002/2014GL060402.

    • Search Google Scholar
    • Export Citation
  • Kincer, J. B., 1916: Daytime and nighttime precipitation and their economic significance. Mon. Wea. Rev., 44, 628633, https://doi.org/10.1175/1520-0493(1916)44<628:DANPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kornhuber, K., D. Coumou, E. Vogel, C. Lesk, J. F. Donges, J. Lehmann, and R. M. Horton, 2020: Amplified Rossby waves enhance risk of concurrent heatwaves in major breadbasket regions. Nat. Climate Change, 10, 4853, https://doi.org/10.1038/s41558-019-0637-z.

    • Search Google Scholar
    • Export Citation
  • Kundu, P. K., 1976: An analysis of inertial oscillations observed near Oregon coast. J. Phys. Oceanogr., 6, 879893, https://doi.org/10.1175/1520-0485(1976)006<0879:AAOIOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maas, L. R. M., and J. J. M. van Haren, 1987: Observations on the vertical structure of tidal and inertial currents in the central North Sea. J. Mar. Res., 45, 293318, https://doi.org/10.1357/002224087788401106.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complexes. Mon. Wea. Rev., 111, 14751493, https://doi.org/10.1175/1520-0493(1983)111<1475:LSMCAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939, https://doi.org/10.1007/s10546-005-9017-5.

    • Search Google Scholar
    • Export Citation
  • Mann, M. E., S. Rahmstorf, K. Kornhuber, B. A. Steinman, S. K. Miller, S. Petri, and D. Coumou, 2018: Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Sci. Adv., 4, eaat3272, https://doi.org/10.1126/sciadv.aat3272.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., and E. Huckle, 2006: Ekman layer rectification. J. Phys. Oceanogr., 36, 16461659, https://doi.org/10.1175/JPO2912.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., E. Huckle, and A. F. Shchepetkin, 2009: Buoyancy effects in a stratified Ekman layer. J. Phys. Oceanogr., 39, 25812599, https://doi.org/10.1175/2009JPO4130.1.

    • Search Google Scholar
    • Export Citation
  • Means, L. L., 1952: On thunderstorm forecasting in the central United States. Mon. Wea. Rev., 80, 165189, https://doi.org/10.1175/1520-0493(1952)080<0165:OTFITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mihanović, H., C. Pattiaratchi, and F. Verspecht, 2016: Diurnal sea breezes force near-inertial waves along Rottnest continental shelf, southwestern Australia. J. Phys. Oceanogr., 46, 34873508, https://doi.org/10.1175/JPO-D-16-0022.1.

    • Search Google Scholar
    • Export Citation
  • Momen, M., and E. Bou-Zeid, 2017: Analytical reduced models for the non-stationary diabatic atmospheric boundary layer. Bound.-Layer Meteor., 164, 383399, https://doi.org/10.1007/s10546-017-0247-0.

    • Search Google Scholar
    • Export Citation
  • O’Brien, J. J., 1970: A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sci., 27, 12131215, https://doi.org/10.1175/1520-0469(1970)027<1213:ANOTVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oerlemans, J., 1998: The atmospheric boundary layer over melting glaciers. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 129–153.

  • Ooyama, K., 1957: A study of diurnal variation of wind caused by periodic variation of eddy viscosity. Final Rep. AF19(604)-1368, 80–135.

  • Paegle, J., and G. E. Rasch, 1973: Three-dimensional characteristics of diurnally varying boundary-layer flows. Mon. Wea. Rev., 101, 746756, https://doi.org/10.1175/1520-0493(1973)101<0746:TCODVB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Papadopoulos, K. H., C. G. Helmis, A. T. Soilemes, J. Kalogiros, P. G. Papageorgas, and D. N. Asimakopoulos, 1997: The structure of katabatic flows down a simple slope. Quart. J. Roy. Meteor. Soc., 123, 15811601, https://doi.org/10.1002/qj.49712354207.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2016: A comparative study of the 3 June 2015 Great Plains low-level jet. Mon. Wea. Rev., 144, 29632979, https://doi.org/10.1175/MWR-D-16-0071.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., 2017: On the forcing of the summertime Great Plains low-level jet. J. Atmos. Sci., 74, 39373953, https://doi.org/10.1175/JAS-D-17-0059.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., and R. D. Clark, 2017: On the initiation of the 20 June 2015 Great Plains low-level jet. J. Appl. Meteor. Climatol., 56, 18831895, https://doi.org/10.1175/JAMC-D-16-0187.1.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low level jet. Mon. Wea. Rev., 116, 94105, https://doi.org/10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parish, T. R., R. D. Clark, and T. D. Sikora, 2020: Nocturnal destabilization associated with the summertime Great Plains low-level jet. Mon. Wea. Rev., 148, 46414656, https://doi.org/10.1175/MWR-D-19-0394.1.

    • Search Google Scholar
    • Export Citation
  • Park, J. J., K. Kim, and R. W. Schmitt, 2009: Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res., 114, C11010, https://doi.org/10.1029/2008JC005216.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pitchford, K. L., and J. London, 1962: The low-level jet as related to nocturnal thunderstorms over Midwest United States. J. Appl. Meteor., 1, 4347, https://doi.org/10.1175/1520-0450(1962)001<0043:TLLJAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., and R. C. Millard Jr., 1970: Comparison between observed and simulated wind-generated inertial oscillations. Deep-Sea Res., 17, 813821, https://doi.org/10.1016/0011-7471(70)90043-4.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., and M. A. Sundermeyer, 1999: Stratified Ekman layers. J. Geophys. Res., 104, 20 46720 494, https://doi.org/10.1029/1999JC900164.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. R. Schudlich, 1987: Wind-driven ocean currents and Ekman transport. Science, 238, 15341538, https://doi.org/10.1126/science.238.4833.1534.

    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., 2002: Rossby waves. Encyclopedia of Atmospheric Sciences, Elsevier, 1923–1939.

  • Rossby, C.-G., 1939: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res., 2, 3855.

    • Search Google Scholar
    • Export Citation
  • Rossby, C.-G., 1940: Planetary flow patterns in the atmosphere. Quart. J. Roy. Meteor. Soc., 66, 6887.

  • Rysman, J.-F., A. Lahellec, E. Vignon, C. Genthon, and S. Verrier, 2016: Characterization of atmospheric Ekman spirals at Dome C, Antarctica. Bound.-Layer Meteor., 160, 363373, https://doi.org/10.1007/s10546-016-0144-y.

    • Search Google Scholar
    • Export Citation
  • Saffin, L., J. Methven, J. Bland, B. Harvey, and C. Sanchez, 2021: Circulation conservation in the outflow of warm conveyor belts and consequences for Rossby wave evolution. Quart. J. Roy. Meteor. Soc., 147, 35873610, https://doi.org/10.1002/qj.4143.

    • Search Google Scholar
    • Export Citation
  • Shaffer, G., 1972: A theory of time-dependent upwelling induced by a spatially- and temporally-varying wind with emphasis on the effects of a seabreeze–landbreeze cycle. Kiel. Meeresforsch., 28, 139161.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and S. Rahimi, 2016: A unified theory for the Great Plains nocturnal low-level jet. J. Atmos. Sci., 73, 30373057, https://doi.org/10.1175/JAS-D-15-0307.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., E. Fedorovich, and J. G. Gebauer, 2018: Mesoscale ascent in nocturnal low-level jets. J. Atmos. Sci., 75, 14031427, https://doi.org/10.1175/JAS-D-17-0279.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., J. G. Gebauer, and D. B. Parsons, 2022: Emergence of a nocturnal low-level jet from a broad baroclinic zone. J. Atmos. Sci., 79, 13631383, https://doi.org/10.1175/JAS-D-21-0187.1.

    • Search Google Scholar
    • Export Citation
  • Sharan, M., and S. G. Gopalakrishnan, 1997: Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modelling. J. Appl. Meteor., 36, 545559, https://doi.org/10.1175/1520-0450(1997)036<0545:CEOEEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shibuya, R., K. Sato, and M. Nakanishi, 2014: Diurnal wind cycles forcing inertial oscillations: A latitude-dependent resonance phenomenon. J. Atmos. Sci., 71, 767781, https://doi.org/10.1175/JAS-D-13-0124.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., P. Hyder, T. P. Rippeth, and I. M. Lucas, 2002: Forced oscillations near the critical latitude for diurnal-inertial resonance. J. Phys. Oceanogr., 32, 177187, https://doi.org/10.1175/1520-0485(2002)032<0177:FONTCL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the southern Great Plains atmospheric boundary layer experiments site. J. Appl. Meteor., 44, 15931606, https://doi.org/10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Stockwell, R. G., W. G. Large, and R. F. Milliff, 2004: Resonant inertial oscillations in moored buoy ocean surface winds. Tellus, 56A, 536547, https://doi.org/10.3402/tellusa.v56i5.14478.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Tan, Z.-M., and M. M. Farahani, 1998: An analytical study of the diurnal variations of wind in a semi-geostrophic Ekman boundary layer model. Bound.-Layer Meteor., 86, 313332, https://doi.org/10.1023/A:1000694732459.

    • Search Google Scholar
    • Export Citation
  • Tombrou, M., A. Dandou, C. Helmis, E. Akylas, G. Angelopoulos, H. Flocas, V. Assimakopoulos, and N. Soulakellis, 2007: Model evaluation of the atmospheric boundary layer and mixed-layer evolution. Bound.-Layer Meteor., 124, 6179, https://doi.org/10.1007/s10546-006-9146-5.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., and D. B. Parsons, 1993: Evolution of environmental conditions preceding the development of a nocturnal mesoscale convective complex. Mon. Wea. Rev., 121, 10781098, https://doi.org/10.1175/1520-0493(1993)121<1078:EOECPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., J. W. Wilson, D. A. Ahijevych, and R. A. Sobash, 2017: Mesoscale vertical motions near nocturnal convection initiation in PECAN. Mon. Wea. Rev., 145, 29192941, https://doi.org/10.1175/MWR-D-17-0005.1.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and C. A. Davis, 2006: Corridors of warm-season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, https://doi.org/10.1175/MWR3188.1.

    • Search Google Scholar
    • Export Citation
  • Tyson, P. D., 1968: Velocity fluctuations in the mountain wind. J. Atmos. Sci., 25, 381384, https://doi.org/10.1175/1520-0469(1968)025<0381:VFITMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vincze, M., N. Fenyvesi, M. Klein, J. Sommeria, S. Viboud, and Y. Ashkenazy, 2019: Evidence for wind-induced Ekman layer resonance based on rotating tank experiments. Europhys. Lett., 125, 44001, https://doi.org/10.1209/0295-5075/125/44001.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1975: Diurnal variations in precipitation and thunderstorm frequency over the conterminous United States. Mon. Wea. Rev., 103, 406419, https://doi.org/10.1175/1520-0493(1975)103<0406:DVIPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walters, C. K., and J. A. Winkler, 2001: Airflow configurations of warm season southerly low-level wind maxima in the Great Plains. Part I: Spatial and temporal characteristics and relationship to convection. Wea. Forecasting, 16, 513530, https://doi.org/10.1175/1520-0434(2001)016<0513:ACOWSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walters, C. K., J. A. Winkler, R. P. Shadboldt, J. van Ravensway, and G. D. Bierly, 2008: A long-term climatology of southerly and northerly low-level jets for the central United States. Ann. Assoc. Amer. Geogr., 98, 521552, https://doi.org/10.1080/00045600802046387.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, https://doi.org/10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and D. B. Parsons, 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, https://doi.org/10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. Hanesiak, J. W. Wilson, S. B. Trier, S. K. Degelia, W. A. Gallus Jr., R. D. Roberts, and X. Wang, 2019: Nocturnal convection initiation during PECAN 2015. Bull. Amer. Meteor. Soc., 100, 22232239, https://doi.org/10.1175/BAMS-D-18-0299.1.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1981: Observations of the velocity response to wind forcing in the upper ocean. J. Geophys. Res., 86, 19691977, https://doi.org/10.1029/JC086iC03p01969.

    • Search Google Scholar
    • Export Citation
  • Weller, R. A., 1982: The relation of near-inertial motions observed in the mixed layer during the JASIN (1978) experiment to the local wind stress and to the quasi-geostrophic flow field. J. Phys. Oceanogr., 12, 11221136, https://doi.org/10.1175/1520-0485(1982)012<1122:TRONIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, https://doi.org/10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitt, D. B., and L. N. Thomas, 2015: Resonant generation and energetics of wind-forced near-inertial motions in a geostrophic flow. J. Phys. Oceanogr., 45, 181208, https://doi.org/10.1175/JPO-D-14-0168.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, https://doi.org/10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Search Google Scholar
    • Export Citation
  • Yamada, T., and G. Mellor, 1975: A simulation of the Wangara atmospheric boundary layer data. J. Atmos. Sci., 32, 23092329, https://doi.org/10.1175/1520-0469(1975)032<2309:ASOTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., S. F. DiMarco, D. C. Smith IV, M. K. Howard, A. E. Jochens, and R. D. Hetland, 2009: Near-resonant ocean response to sea breeze on a stratified continental shelf. J. Phys. Oceanogr., 39, 21372155, https://doi.org/10.1175/2009JPO4054.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., D. C. Smith IV, S. F. DiMarco, and R. D. Hetland, 2010: A numerical study of sea-breeze-driven ocean Poincare wave propagation and mixing near the critical latitude. J. Phys. Oceanogr., 40, 4866, https://doi.org/10.1175/2009JPO4216.1.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution numerical model. Mon. Wea. Rev., 124, 785806, https://doi.org/10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 278 278 20
Full Text Views 153 153 16
PDF Downloads 163 163 20