Estimates of Southern Hemispheric Gravity Wave Momentum Fluxes across Observations, Reanalyses, and Kilometer-Scale Numerical Weather Prediction Model

Aman Gupta aMeteorological Institute, Ludwig Maximilians Universität, Munich, Germany

Search for other papers by Aman Gupta in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2215-7135
,
Robert Reichert aMeteorological Institute, Ludwig Maximilians Universität, Munich, Germany
bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Robert Reichert in
Current site
Google Scholar
PubMed
Close
,
Andreas Dörnbrack bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Andreas Dörnbrack in
Current site
Google Scholar
PubMed
Close
,
Hella Garny aMeteorological Institute, Ludwig Maximilians Universität, Munich, Germany
bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Hella Garny in
Current site
Google Scholar
PubMed
Close
,
Roland Eichinger bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany
dDepartment of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University Prague, Prague, Czech Republic

Search for other papers by Roland Eichinger in
Current site
Google Scholar
PubMed
Close
,
Inna Polichtchouk cEuropean Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Inna Polichtchouk in
Current site
Google Scholar
PubMed
Close
,
Bernd Kaifler bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Bernd Kaifler in
Current site
Google Scholar
PubMed
Close
, and
Thomas Birner aMeteorological Institute, Ludwig Maximilians Universität, Munich, Germany
bInstitut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany

Search for other papers by Thomas Birner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Gravity waves (GWs) are among the key drivers of the meridional overturning circulation in the mesosphere and upper stratosphere. Their representation in climate models suffers from insufficient resolution and limited observational constraints on their parameterizations. This obscures assessments of middle atmospheric circulation changes in a changing climate. This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer-scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanalysis (ERA5), to a coarse-resolution climate model (EMAC). Resolved vertical flux of zonal GW momentum (GWMF) is found to be stronger by a factor of at least 2–2.5 in IFS compared to ERA5. Compared to resolved GWMF in IFS, parameterizations in ERA5 and EMAC continue to inaccurately generate excessive GWMF poleward of 60°S, yielding prominent differences between resolved and parameterized GWMFs. A like-to-like validation of GW profiles in IFS and ERA5 reveals similar wave structures. Still, even at ∼1 km resolution, the resolved waves in IFS are weaker than those observed by lidar. Further, GWMF estimates across datasets reveal that temperature-based proxies, based on midfrequency approximations for linear GWs, overestimate GWMF due to simplifications and uncertainties in GW wavelength estimation from data. Overall, the analysis provides GWMF benchmarks for parameterization validation and calls for three-dimensional GW parameterizations, better upper-boundary treatment, and vertical resolution increases commensurate with increases in horizontal resolution in models, for a more realistic GW analysis.

Significance Statement

Gravity wave–induced momentum forcing forms a key component of the middle atmospheric circulation. However, complete knowledge of gravity waves, their atmospheric effects, and their long-term trends are obscured due to limited global observations, and the inability of current climate models to fully resolve them. This study combines a kilometer-scale forecast model, modern reanalysis, and a coarse-resolution climate model to first compare the resolved and parameterized momentum fluxes by gravity waves generated over the Andes, and then evaluate the fluxes using a state-of-the-art ground-based Rayleigh lidar. Our analysis reveals shortcomings in current model parameterizations of gravity waves in the middle atmosphere and highlights the sensitivity of the estimated flux to the formulation used.

Gupta’s current affiliation: Doerr School of Sustainability, Stanford University, Stanford, California.

This article is included in the MS-GWaves Special Collection.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aman Gupta, ag4680@stanford.edu

Abstract

Gravity waves (GWs) are among the key drivers of the meridional overturning circulation in the mesosphere and upper stratosphere. Their representation in climate models suffers from insufficient resolution and limited observational constraints on their parameterizations. This obscures assessments of middle atmospheric circulation changes in a changing climate. This study presents a comprehensive analysis of stratospheric GW activity above and downstream of the Andes from 1 to 15 August 2019, with special focus on GW representation ranging from an unprecedented kilometer-scale global forecast model (1.4 km ECMWF IFS), ground-based Rayleigh lidar (CORAL) observations, modern reanalysis (ERA5), to a coarse-resolution climate model (EMAC). Resolved vertical flux of zonal GW momentum (GWMF) is found to be stronger by a factor of at least 2–2.5 in IFS compared to ERA5. Compared to resolved GWMF in IFS, parameterizations in ERA5 and EMAC continue to inaccurately generate excessive GWMF poleward of 60°S, yielding prominent differences between resolved and parameterized GWMFs. A like-to-like validation of GW profiles in IFS and ERA5 reveals similar wave structures. Still, even at ∼1 km resolution, the resolved waves in IFS are weaker than those observed by lidar. Further, GWMF estimates across datasets reveal that temperature-based proxies, based on midfrequency approximations for linear GWs, overestimate GWMF due to simplifications and uncertainties in GW wavelength estimation from data. Overall, the analysis provides GWMF benchmarks for parameterization validation and calls for three-dimensional GW parameterizations, better upper-boundary treatment, and vertical resolution increases commensurate with increases in horizontal resolution in models, for a more realistic GW analysis.

Significance Statement

Gravity wave–induced momentum forcing forms a key component of the middle atmospheric circulation. However, complete knowledge of gravity waves, their atmospheric effects, and their long-term trends are obscured due to limited global observations, and the inability of current climate models to fully resolve them. This study combines a kilometer-scale forecast model, modern reanalysis, and a coarse-resolution climate model to first compare the resolved and parameterized momentum fluxes by gravity waves generated over the Andes, and then evaluate the fluxes using a state-of-the-art ground-based Rayleigh lidar. Our analysis reveals shortcomings in current model parameterizations of gravity waves in the middle atmosphere and highlights the sensitivity of the estimated flux to the formulation used.

Gupta’s current affiliation: Doerr School of Sustainability, Stanford University, Stanford, California.

This article is included in the MS-GWaves Special Collection.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Aman Gupta, ag4680@stanford.edu

Supplementary Materials

    • Supplemental Materials (PDF 13.669 MB)
Save
  • Albers, J. R., and T. Birner, 2014: Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71, 40284054, https://doi.org/10.1175/JAS-D-14-0026.1.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and H. Teitelbaum, 2011: Three-dimensional properties of Andes mountain waves observed by satellite: A case study. J. Geophys. Res., 116, D23110, https://doi.org/10.1029/2011JD016151.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and A. W. Grimsdell, 2013: Seasonal cycle of orographic gravity wave occurrence above small islands in the Southern Hemisphere: Implications for effects on the general circulation. J. Geophys. Res. Atmos., 118, 11 58911 599, https://doi.org/10.1002/2013JD020526.

    • Search Google Scholar
    • Export Citation
  • Alexander, M. J., and Coauthors, 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136, 11031124, https://doi.org/10.1002/qj.637.

    • Search Google Scholar
    • Export Citation
  • Amemiya, A., and K. Sato, 2016: A new gravity wave parameterization including three-dimensional propagation. J. Meteor. Soc. Japan, 94, 237256, https://doi.org/10.2151/jmsj.2016-013.

    • Search Google Scholar
    • Export Citation
  • Banyard, T. P., C. J. Wright, N. P. Hindley, G. Halloran, I. Krisch, B. Kaifler, and L. Hoffmann, 2021: Atmospheric gravity waves in Aeolus wind lidar observations. Geophys. Res. Lett., 48, e2021GL092756, https://doi.org/10.1029/2021GL092756.

    • Search Google Scholar
    • Export Citation
  • Baumgaertner, A. J. G., P. Jöckel, A. D. Aylward, and M. J. Harris, 2013: Simulation of particle precipitation effects on the atmosphere with the MESSy model system. Climate and Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program, F.-J. Lübken, Ed., Springer, 301–316, https://doi.org/10.1007/978-94-007-4348-9_17.

  • Becker, E., 2012: Dynamical control of the middle atmosphere. Space Sci. Rev., 168, 283314, https://doi.org/10.1007/s11214-011-9841-5.

    • Search Google Scholar
    • Export Citation
  • Chen, Q., and Coauthors, 2022: Satellite observations of gravity wave momentum flux in the mesosphere and lower thermosphere (MLT): Feasibility and requirements. Atmos. Meas. Tech., 15, 70717103, https://doi.org/10.5194/amt-15-7071-2022.

    • Search Google Scholar
    • Export Citation
  • Corcos, M., A. Hertzog, R. Plougonven, and A. Podglajen, 2021: Observation of gravity waves at the tropical tropopause using superpressure balloons. J. Geophys. Res. Atmos., 126, e2021JD035165, https://doi.org/10.1029/2021JD035165.

    • Search Google Scholar
    • Export Citation
  • Domeisen, D. I. V., and A. H. Butler, 2020: Stratospheric drivers of extreme events at the Earth’s surface. Commun. Earth Environ., 1, 59, https://doi.org/10.1038/s43247-020-00060-z.

    • Search Google Scholar
    • Export Citation
  • Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2012: The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140158, https://doi.org/10.1016/j.rse.2010.10.017.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., M. Leutbecher, R. Kivi, and E. Kyrö, 1999: Mountain-wave-induced record low stratospheric temperatures above northern Scandinavia. Tellus, 51A, 951963, https://doi.org/10.3402/tellusa.v51i5.14504.

    • Search Google Scholar
    • Export Citation
  • Dörnbrack, A., S. Gisinger, M. C. Pitts, L. R. Poole, and M. Maturilli, 2017: Multilevel cloud structures over Svalbard. Mon. Wea. Rev., 145, 11491159, https://doi.org/10.1175/MWR-D-16-0214.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and Coauthors, 2018: High-altitude (0–100 km) global atmospheric reanalysis system: Description and application to the 2014 austral winter of the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Mon. Wea. Rev., 146, 26392666, https://doi.org/10.1175/MWR-D-17-0386.1.

    • Search Google Scholar
    • Export Citation
  • Ehard, B., B. Kaifler, N. Kaifler, and M. Rapp, 2015: Evaluation of methods for gravity wave extraction from middle-atmospheric lidar temperature measurements. Atmos. Meas. Tech., 8, 46454655, https://doi.org/10.5194/amt-8-4645-2015.

    • Search Google Scholar
    • Export Citation
  • Eichinger, R., H. Garny, P. Šácha, J. Danker, S. Dietmüller, and S. Oberländer-Hayn, 2020: Effects of missing gravity waves on stratospheric dynamics; Part 1: Climatology. Climate Dyn., 54, 31653183, https://doi.org/10.1007/s00382-020-05166-w.

    • Search Google Scholar
    • Export Citation
  • Eichinger, R., and Coauthors, 2024: Emulating lateral gravity wave propagation in a global chemistry-climate model (EMAC v2.55.2) through horizontal flux redistribution. EGUsphere, https://doi.org/10.5194/egusphere-2023-270, in press.

    • Search Google Scholar
    • Export Citation
  • Eliassen, A., and E. Palm, 1961: On the transfer of energy in stationary mountain waves. Geofys. Publ., 22, 123.

  • Ern, M., P. Preusse, M. J. Alexander, and C. D. Warner, 2004: Absolute values of gravity wave momentum flux derived from satellite data. J. Geophys. Res., 109, D20103, https://doi.org/10.1029/2004JD004752.

    • Search Google Scholar
    • Export Citation
  • Ern, M., and Coauthors, 2014: Interaction of gravity waves with the QBO: A satellite perspective. J. Geophys. Res. Atmos., 119, 23292355, https://doi.org/10.1002/2013JD020731.

    • Search Google Scholar
    • Export Citation
  • Ern, M., L. Hoffmann, and P. Preusse, 2017: Directional gravity wave momentum fluxes in the stratosphere derived from high-resolution AIRS temperature data. Geophys. Res. Lett., 44, 475485, https://doi.org/10.1002/2016GL072007.

    • Search Google Scholar
    • Export Citation
  • Ern, M., Q. T. Trinh, P. Preusse, J. C. Gille, M. G. Mlynczak, J. M. Russell III, and M. Riese, 2018: GRACILE: A comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings. Earth Syst. Sci. Data, 10, 857892, https://doi.org/10.5194/essd-10-857-2018.

    • Search Google Scholar
    • Export Citation
  • Fritts, D. C., and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1003, https://doi.org/10.1029/2001RG000106.

    • Search Google Scholar
    • Export Citation
  • Garcia, R. R., and S. Solomon, 1985: The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res., 90, 38503868, https://doi.org/10.1029/JD090iD02p03850.

    • Search Google Scholar
    • Export Citation
  • Geller, M. A., and Coauthors, 2013: A comparison between gravity wave momentum fluxes in observations and climate models. J. Climate, 26, 63836405, https://doi.org/10.1175/JCLI-D-12-00545.1.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Giorgetta, M. A., E. Manzini, and E. Roeckner, 2002: Forcing of the quasi-biennial oscillation from a broad spectrum of atmospheric waves. Geophys. Res. Lett., 29, 1245, https://doi.org/10.1029/2002GL014756.

    • Search Google Scholar
    • Export Citation
  • Gisinger, S., and Coauthors, 2017: Atmospheric conditions during the Deep Propagating Gravity Wave Experiment (DEEPWAVE). Mon. Wea. Rev., 145, 42494275, https://doi.org/10.1175/MWR-D-16-0435.1.

    • Search Google Scholar
    • Export Citation
  • Gisinger, S., I. Polichtchouk, A. Dörnbrack, R. Reichert, B. Kaifler, N. Kaifler, M. Rapp, and I. Sandu, 2022: Gravity-wave-driven seasonal variability of temperature differences between ECMWF IFS and Rayleigh lidar measurements in the lee of the southern Andes. J. Geophys. Res. Atmos., 127, e2021JD036270, https://doi.org/10.1029/2021JD036270.

    • Search Google Scholar
    • Export Citation
  • Granier, C., and Coauthors, 2011: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 109, 163, https://doi.org/10.1007/s10584-011-0154-1.

    • Search Google Scholar
    • Export Citation
  • Gupta, A., T. Birner, A. Dörnbrack, and I. Polichtchouk, 2021: Importance of gravity wave forcing for springtime southern polar vortex breakdown as revealed by ERA5. Geophys. Res. Lett., 48, e2021GL092762, https://doi.org/10.1029/2021GL092762.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., J. D. Doyle, S. D. Eckermann, Q. Jiang, and P. A. Reinecke, 2014: What is the source of the stratospheric gravity wave belt in austral winter? J. Atmos. Sci., 71, 15831592, https://doi.org/10.1175/JAS-D-13-0332.1.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hertzog, A., G. Boccara, R. A. Vincent, F. Vial, and P. Cocquerez, 2008: Estimation of gravity wave momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. Part II: Results from the Vorcore campaign in Antarctica. J. Atmos. Sci., 65, 30563070, https://doi.org/10.1175/2008JAS2710.1.

    • Search Google Scholar
    • Export Citation
  • Hindley, N. P., C. J. Wright, L. Hoffmann, T. Moffat-Griffin, and N. J. Mitchell, 2020: An 18-year climatology of directional stratospheric gravity wave momentum flux from 3-D satellite observations. Geophys. Res. Lett., 47, e2020GL089557, https://doi.org/10.1029/2020GL089557.

    • Search Google Scholar
    • Export Citation
  • Hindley, N. P., and Coauthors, 2021: Stratospheric gravity waves over the mountainous island of South Georgia: Testing a high-resolution dynamical model with 3-D satellite observations and radiosondes. Atmos. Chem. Phys., 21, 76957722, https://doi.org/10.5194/acp-21-7695-2021.

    • Search Google Scholar
    • Export Citation
  • Hines, C. O., 1997: Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation. J. Atmos. Sol.-Terr. Phys., 59, 387400, https://doi.org/10.1016/S1364-6826(96)00080-6.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., X. Xue, and M. J. Alexander, 2013: A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos., 118, 416434, https://doi.org/10.1029/2012JD018658.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, L., R. Spang, A. Orr, M. J. Alexander, L. A. Holt, and O. Stein, 2017: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation. Atmos. Chem. Phys., 17, 29012920, https://doi.org/10.5194/acp-17-2901-2017.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, https://doi.org/10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Höpfner, M., and Coauthors, 2006: MIPAS detects Antarctic stratospheric belt of NAT PSCs caused by mountain waves. Atmos. Chem. Phys., 6, 12211230, https://doi.org/10.5194/acp-6-1221-2006.

    • Search Google Scholar
    • Export Citation
  • Hourdin, F., and Coauthors, 2017: The art and science of climate model tuning. Bull. Amer. Meteor. Soc., 98, 589602, https://doi.org/10.1175/BAMS-D-15-00135.1.

    • Search Google Scholar
    • Export Citation
  • Jöckel, P., and Coauthors, 2010: Development cycle 2 of the Modular Earth Submodel System (MESSy2). Geosci. Model Dev., 3, 717752, https://doi.org/10.5194/gmd-3-717-2010.

    • Search Google Scholar
    • Export Citation
  • Jöckel, P., and Coauthors, 2016: Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51. Geosci. Model Dev., 9, 11531200, https://doi.org/10.5194/gmd-9-1153-2016.

    • Search Google Scholar
    • Export Citation
  • Kaifler, B., and N. Kaifler, 2021: A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere. Atmos. Meas. Tech., 14, 17151732, https://doi.org/10.5194/amt-14-1715-2021.

    • Search Google Scholar
    • Export Citation
  • Kaifler, B., N. Kaifler, B. Ehard, A. Dörnbrack, M. Rapp, and D. C. Fritts, 2015: Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett., 42, 94889494, https://doi.org/10.1002/2015GL066465.

    • Search Google Scholar
    • Export Citation
  • Kaifler, N., B. Kaifler, A. Dörnbrack, M. Rapp, J. L. Hormaechea, and A. de la Torre, 2020: Lidar observations of large-amplitude mountain waves in the stratosphere above Tierra del Fuego, Argentina. Sci. Rep., 10, 14529, https://doi.org/10.1038/s41598-020-71443-7.

    • Search Google Scholar
    • Export Citation
  • Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, https://doi.org/10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravity-wave drag parametrization for numerical climate and weather prediction models. Atmos.–Ocean, 41, 6598, https://doi.org/10.3137/ao.410105.

    • Search Google Scholar
    • Export Citation
  • Klaver, R., R. Haarsma, P. L. Vidale, and W. Hazeleger, 2020: Effective resolution in high resolution global atmospheric models for climate studies. Atmos. Sci. Lett., 21, e952, https://doi.org/10.1002/asl.952.

    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and R. B. Smith, 2015: Gravity wave diagnostics and characteristics in mesoscale fields. J. Atmos. Sci., 72, 43724392, https://doi.org/10.1175/JAS-D-15-0079.1.

    • Search Google Scholar
    • Export Citation
  • Kruse, C. G., and Coauthors, 2022: Observed and modeled mountain waves from the surface to the mesosphere near the Drake Passage. J. Atmos. Sci., 79, 909932, https://doi.org/10.1175/JAS-D-21-0252.1.

    • Search Google Scholar
    • Export Citation
  • Lindgren, E. A., A. Sheshadri, A. Podglajen, and R. W. Carver, 2020: Seasonal and latitudinal variability of the gravity wave spectrum in the lower stratosphere. J. Geophys. Res. Atmos., 125, e2020JD032850, https://doi.org/10.1029/2020JD032850.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, https://doi.org/10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Maciel, P., T. Quintino, U. Modigliani, P. Dando, B. Raoult, W. Deconinck, F. Rathgeber, and C. Simarro, 2017: The new ECMWF interpolation package MIR. ECMWF Newsletter, No. 152, ECMWF, Reading, United Kingdom, 36–39, https://www.ecmwf.int/en/elibrary/80568-new-ecmwf-interpolation-package-mir.

  • Mansfield, L. A., and A. Sheshadri, 2022: Calibration and uncertainty quantification of a gravity wave parameterization: A case study of the quasi-biennial oscillation in an intermediate complexity climate model. J. Adv. Model. Earth Syst., 14, e2022MS003245, https://doi.org/10.1029/2022MS003245.

    • Search Google Scholar
    • Export Citation
  • McLandress, C., J. F. Scinocca, T. G. Shepherd, M. C. Reader, and G. L. Manney, 2013: Dynamical control of the mesosphere by orographic and nonorographic gravity wave drag during the extended northern winters of 2006 and 2009. J. Atmos. Sci., 70, 21522169, https://doi.org/10.1175/JAS-D-12-0297.1.

    • Search Google Scholar
    • Export Citation
  • Minamihara, Y., K. Sato, and M. Tsutsumi, 2020: Intermittency of gravity waves in the Antarctic troposphere and lower stratosphere revealed by the PANSY radar observation. J. Geophys. Res. Atmos., 125, e2020JD032543, https://doi.org/10.1029/2020JD032543.

    • Search Google Scholar
    • Export Citation
  • Morfa, Y. A., and C. C. Stephan, 2023: The relationship between horizontal and vertical velocity wavenumber spectra in global storm-resolving simulations. J. Atmos. Sci., 80, 10871105, https://doi.org/10.1175/JAS-D-22-0105.1.

    • Search Google Scholar
    • Export Citation
  • Morgenstern, O., and Coauthors, 2017: Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev., 10, 639671, https://doi.org/10.5194/gmd-10-639-2017.

    • Search Google Scholar
    • Export Citation
  • Orr, A., P. Bechtold, J. Scinocca, M. Ern, and M. Janiskova, 2010: Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J. Climate, 23, 59055926, https://doi.org/10.1175/2010JCLI3490.1.

    • Search Google Scholar
    • Export Citation
  • Pahlavan, H. A., J. M. Wallace, and Q. Fu, 2023: Characteristics of tropical convective gravity waves resolved by ERA5 reanalysis. J. Atmos. Sci., 80, 777795, https://doi.org/10.1175/JAS-D-22-0057.1.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. Hertzog, and L. Guez, 2013: Gravity waves over Antarctica and the Southern Ocean: Consistent momentum fluxes in mesoscale simulations and stratospheric balloon observations. Quart. J. Roy. Meteor. Soc., 139, 101118, https://doi.org/10.1002/qj.1965.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., A. de la Cámara, A. Hertzog, and F. Lott, 2020: How does knowledge of atmospheric gravity waves guide their parameterizations? Quart. J. Roy. Meteor. Soc., 146, 15291543, https://doi.org/10.1002/qj.3732.

    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., T. G. Shepherd, R. J. Hogan, and P. Bechtold, 2018: Sensitivity of the Brewer–Dobson circulation and polar vortex variability to parameterized nonorographic gravity wave drag in a high-resolution atmospheric model. J. Atmos. Sci., 75, 15251543, https://doi.org/10.1175/JAS-D-17-0304.1.

    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., N. Wedi, and Y.-H. Kim, 2022: Resolved gravity waves in the tropical stratosphere: Impact of horizontal resolution and deep convection parametrization. Quart. J. Roy. Meteor. Soc., 148, 233251, https://doi.org/10.1002/qj.4202.

    • Search Google Scholar
    • Export Citation
  • Polichtchouk, I., A. van Niekerk, and N. Wedi, 2023: Resolved gravity waves in the extratropical stratosphere: Effect of horizontal resolution increase from O(10) to O(1) km. J. Atmos. Sci., 80, 473486, https://doi.org/10.1175/JAS-D-22-0138.1.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., M. Ern, P. Bechtold, S. D. Eckermann, S. Kalisch, Q. T. Trinh, and M. Riese, 2014: Characteristics of gravity waves resolved by ECMWF. Atmos. Chem. Phys., 14, 10 48310 508, https://doi.org/10.5194/acp-14-10483-2014.

    • Search Google Scholar
    • Export Citation
  • Procházková, Z., and Coauthors, 2023: Sensitivity of mountain wave drag estimates on separation methods and proposed improvements. J. Atmos. Sci., 80, 16611680, https://doi.org/10.1175/JAS-D-22-0151.1.

    • Search Google Scholar
    • Export Citation
  • Queney, P., 1948: The problem of air flow over mountains: A summary of theoretical studies. Bull. Amer. Meteor. Soc., 29, 1626, https://doi.org/10.1175/1520-0477-29.1.16.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., and Coauthors, 2010: The Concordiasi project in Antarctica. Bull. Amer. Meteor. Soc., 91, 6986, https://doi.org/10.1175/2009BAMS2764.1.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., A. Dörnbrack, and P. Preusse, 2018: Large midlatitude stratospheric temperature variability caused by inertial instability: A potential source of bias for gravity wave climatologies. Geophys. Res. Lett., 45, 10 68210 690, https://doi.org/10.1029/2018GL079142.

    • Search Google Scholar
    • Export Citation
  • Rapp, M., and Coauthors, 2021: SOUTHTRAC-GW: An airborne field campaign to explore gravity wave dynamics at the world’s strongest hotspot. Bull. Amer. Meteor. Soc., 102, E871E893, https://doi.org/10.1175/BAMS-D-20-0034.1.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Reichert, R., B. Kaifler, N. Kaifler, A. Dörnbrack, M. Rapp, and J. L. Hormaechea, 2021: High-cadence lidar observations of middle atmospheric temperature and gravity waves at the southern Andes hot spot. J. Geophys. Res. Atmos., 126, e2021JD034683, https://doi.org/10.1029/2021JD034683.

    • Search Google Scholar
    • Export Citation
  • Roeckner, E., and Coauthors, 2003: The atmospheric general circulation model ECHAM 5. Part I: Model description. Max-Planck-Institut für Meteorologie Rep. 349, 127 pp., https://doi.org/10.17617/2.995269.

  • Sato, K., and S. Hirano, 2019: The climatology of the Brewer–Dobson circulation and the contribution of gravity waves. Atmos. Chem. Phys., 19, 45174539, https://doi.org/10.5194/acp-19-4517-2019.

    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Watanabe, Y. Kawatani, Y. Tomikawa, K. Miyazaki, and M. Takahashi, 2009: On the origins of mesospheric gravity waves. Geophys. Res. Lett., 36, L19801, https://doi.org/10.1029/2009GL039908.

    • Search Google Scholar
    • Export Citation
  • Sato, K., S. Tateno, S. Watanabe, and Y. Kawatani, 2012: Gravity wave characteristics in the Southern Hemisphere revealed by a high-resolution middle-atmosphere general circulation model. J. Atmos. Sci., 69, 13781396, https://doi.org/10.1175/JAS-D-11-0101.1.

    • Search Google Scholar
    • Export Citation
  • Schroeder, S., P. Preusse, M. Ern, and M. Riese, 2009: Gravity waves resolved in ECMWF and measured by SABER. Geophys. Res. Lett., 36, L10805, https://doi.org/10.1029/2008GL037054.

    • Search Google Scholar
    • Export Citation
  • Schulzweida, U., 2005: CDO user’s guide. MPI, https://code.mpimet.mpg.de/projects/cdo/embedded/index.html.

  • Scinocca, J. F., 2003: An accurate spectral nonorographic gravity wave drag parameterization for general circulation models. J. Atmos. Sci., 60, 667682, https://doi.org/10.1175/1520-0469(2003)060<0667:AASNGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137, 303317, https://doi.org/10.1002/qj.763.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, https://doi.org/10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Song, B.-G., H.-Y. Chun, and I.-S. Song, 2020: Role of gravity waves in a vortex-split sudden stratospheric warming in January 2009. J. Atmos. Sci., 77, 33213342, https://doi.org/10.1175/JAS-D-20-0039.1.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., C. Strube, D. Klocke, M. Ern, L. Hoffmann, P. Preusse, and H. Schmidt, 2019: Intercomparison of gravity waves in global convection-permitting models. J. Atmos. Sci., 76, 27392759, https://doi.org/10.1175/JAS-D-19-0040.1.

    • Search Google Scholar
    • Export Citation
  • Stephan, C. C., and Coauthors, 2022: Atmospheric energy spectra in global kilometre-scale models. Tellus, 74A, 280299, https://doi.org/10.16993/tellusa.26.

    • Search Google Scholar
    • Export Citation
  • Strube, C., M. Ern, P. Preusse, and M. Riese, 2020: Removing spurious inertial instability signals from gravity wave temperature perturbations using spectral filtering methods. Atmos. Meas. Tech., 13, 49274945, https://doi.org/10.5194/amt-13-4927-2020.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Niekerk, A., and S. B. Vosper, 2021: Towards a more “scale-aware” orographic gravity wave drag parametrization: Description and initial testing. Quart. J. Roy. Meteor. Soc., 147, 32433262, https://doi.org/10.1002/qj.4126.

    • Search Google Scholar
    • Export Citation
  • van Niekerk, A., and Coauthors, 2020: Constraining Orographic Drag Effects (COORDE): A model comparison of resolved and parametrized orographic drag. J. Adv. Model. Earth Syst., 12, e2020MS002160, https://doi.org/10.1029/2020MS002160.

    • Search Google Scholar
    • Export Citation
  • Voelker, G. S., G. Bölöni, Y.-H. Kim, G. Zängl, and U. Achatz, 2023: MS-GWaM: A 3-dimensional transient gravity wave parametrization for atmospheric models. arXiv, 2309.11257v1, https://doi.org/10.48550/arXiv.2309.11257.

  • Wedi, N. P., and Coauthors, 2020: A baseline for global weather and climate simulations at 1 km resolution. J. Adv. Model. Earth Syst., 12, e2020MS002192, https://doi.org/10.1029/2020MS002192.

    • Search Google Scholar
    • Export Citation
  • Weimer, M., C. Wilka, D. E. Kinnison, R. R. Garcia, J. T. Bacmeister, M. J. Alexander, A. Dörnbrack, and S. Solomon, 2023: A method for estimating global subgrid-scale orographic gravity-wave temperature perturbations in chemistry-climate models. J. Adv. Model. Earth Syst., 15, e2022MS003505, https://doi.org/10.1029/2022MS003505.

    • Search Google Scholar
    • Export Citation
  • Wilson, R., M. L. Chanin, and A. Hauchecorne, 1991: Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2. Climatology. J. Geophys. Res., 96, 51695183, https://doi.org/10.1029/90JD02610.

    • Search Google Scholar
    • Export Citation
  • Xu, J., A. K. Smith, and G. P. Brasseur, 2000: The effects of gravity waves on distributions of chemically active constituents in the mesopause region. J. Geophys. Res., 105, 26 59326 602, https://doi.org/10.1029/2000JD900446.

    • Search Google Scholar
    • Export Citation
  • Žagar, N., D. Jelić, M. J. Alexander, and E. Manzini, 2018: Estimating subseasonal variability and trends in global atmosphere using reanalysis data. Geophys. Res. Lett., 45, 12 99913 007, https://doi.org/10.1029/2018GL080051.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 414 414 49
Full Text Views 170 170 41
PDF Downloads 237 237 58