Linear Time-Invariant Models of a Large Cumulus Ensemble

Zhiming Kuang aDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts
bPaulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

Search for other papers by Zhiming Kuang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-9017-0350
Restricted access

Abstract

Methods in system identification are used to obtain linear time-invariant state-space models that describe how horizontal averages of temperature and humidity of a large cumulus ensemble evolve with time under small forcing. The cumulus ensemble studied here is simulated with cloud-system-resolving models in radiative–convective equilibrium. The identified models extend steady-state linear response functions used in past studies and provide accurate descriptions of the transfer function, the noise model, and the behavior of cumulus convection when coupled with two-dimensional gravity waves. A novel procedure is developed to convert the state-space models into an interpretable form, which is used to elucidate and quantify memory in cumulus convection. The linear problem studied here serves as a useful reference point for more general efforts to obtain data-driven and interpretable parameterizations of cumulus convection.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiming Kuang, kuang@fas.harvard.edu

Abstract

Methods in system identification are used to obtain linear time-invariant state-space models that describe how horizontal averages of temperature and humidity of a large cumulus ensemble evolve with time under small forcing. The cumulus ensemble studied here is simulated with cloud-system-resolving models in radiative–convective equilibrium. The identified models extend steady-state linear response functions used in past studies and provide accurate descriptions of the transfer function, the noise model, and the behavior of cumulus convection when coupled with two-dimensional gravity waves. A novel procedure is developed to convert the state-space models into an interpretable form, which is used to elucidate and quantify memory in cumulus convection. The linear problem studied here serves as a useful reference point for more general efforts to obtain data-driven and interpretable parameterizations of cumulus convection.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhiming Kuang, kuang@fas.harvard.edu
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnold, N. P., and D. A. Randall, 2015: Global-scale convective aggregation: Implications for the Madden-Julian oscillation. J. Adv. Model. Earth Syst., 7, 14991518, https://doi.org/10.1002/2015MS000498.

    • Search Google Scholar
    • Export Citation
  • Athanasopoulos, G., D. S. Poskitt, and F. Vahid, 2012: Two canonical VARMA forms: Scalar component models vis-à-vis the echelon form. Econom. Rev., 31, 6083, https://doi.org/10.1080/07474938.2011.607088.

    • Search Google Scholar
    • Export Citation
  • Brenowitz, N. D., and C. S. Bretherton, 2018: Prognostic validation of a neural network unified physics parameterization. Geophys. Res. Lett., 45, 62896298, https://doi.org/10.1029/2018GL078510.

    • Search Google Scholar
    • Export Citation
  • Candès, E. J., J. K. Romberg, and T. Tao, 2006: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math., 59, 12071223, https://doi.org/10.1002/cpa.20124.

    • Search Google Scholar
    • Export Citation
  • Donoho, D. L., 2006: For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Commun. Pure Appl. Math., 59, 797829, https://doi.org/10.1002/cpa.20132.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., J. D. Neelin, and C. S. Bretherton, 1994: On large-scale circulations in convecting atmospheres. Quart. J. Roy. Meteor. Soc., 120, 11111143, https://doi.org/10.1002/qj.49712051902.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002a: A PDF-based model for boundary layer clouds. Part I: Method and model description. J. Atmos. Sci., 59, 35403551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002b: A PDF-based model for boundary layer clouds. Part II: Model results. J. Atmos. Sci., 59, 35523571, https://doi.org/10.1175/1520-0469(2002)059<3552:APBMFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Han, Y., G. J. Zhang, X. Huang, and Y. Wang, 2020: A moist physics parameterization based on deep learning. J. Adv. Model. Earth Syst., 12, e2020MS002076, https://doi.org/10.1029/2020MS002076.

    • Search Google Scholar
    • Export Citation
  • Han, Y., G. J. Zhang, and Y. Wang, 2023: An ensemble of neural networks for moist physics processes, its generalizability and stable integration. J. Adv. Model. Earth Syst., 15, e2022MS003508, https://doi.org/10.1029/2022MS003508.

    • Search Google Scholar
    • Export Citation
  • Hassanzadeh, P., and Z. Kuang, 2016: The linear response function of an idealized atmosphere. Part I: Construction using Green’s functions and applications. J. Atmos. Sci., 73, 34233439, https://doi.org/10.1175/JAS-D-15-0338.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. R., and D. A. Randall, 2011: Quantifying the limits of convective parameterizations. J. Geophys. Res., 116, D08210, https://doi.org/10.1029/2010JD014913.

    • Search Google Scholar
    • Export Citation
  • Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82, 3545, https://doi.org/10.1115/1.3662552.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., C. DeMott, and D. Randall, 2008: Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU Multiscale Modeling Framework. J. Climate, 21, 413431, https://doi.org/10.1175/2007JCLI1630.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008a: Modeling the interaction between cumulus convection and linear gravity waves using a limited-domain cloud system–resolving model. J. Atmos. Sci., 65, 576591, https://doi.org/10.1175/2007JAS2399.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008b: A moisture-stratiform instability for convectively coupled waves. J. Atmos. Sci., 65, 834854, https://doi.org/10.1175/2007JAS2444.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2010: Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implications for the dynamics of convectively coupled waves. J. Atmos. Sci., 67, 941962, https://doi.org/10.1175/2009JAS3260.1.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2012: Weakly forced mock Walker cells. J. Atmos. Sci., 69, 27592786, https://doi.org/10.1175/JAS-D-11-0307.1.

  • Kuang, Z., 2018: Linear stability of moist convecting atmospheres. Part I: From linear response functions to a simple model and applications to convectively coupled waves. J. Atmos. Sci., 75, 28892907, https://doi.org/10.1175/JAS-D-18-0092.1.

    • Search Google Scholar
    • Export Citation
  • Larimore, W. E., 1990: Canonical variate analysis in identification, filtering, and adaptive-control. 29th IEEE Conf. on Decision and Control, Honolulu, HI, IEEE, 596–604, https://doi.org/10.1109/CDC.1990.203665.

  • Ljung, L., 1999: System Identification: Theory for the User. 2nd ed. Prentice Hall, 631 pp.

  • Luenberger, D. G., 1967: Canonical forms for linear multivariable systems. IEEE Trans. Autom. Control, 12, 290293, https://doi.org/10.1109/TAC.1967.1098584.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, https://doi.org/10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, J. W.-B. Lin, K. Hales, and C. E. Holloway, 2008: Rethinking convective quasi-equilibrium: Observational constraints for stochastic convective schemes in climate models. Philos. Trans. Roy. Soc., A366, 25812604, https://doi.org/10.1098/rsta.2008.0056.

    • Search Google Scholar
    • Export Citation
  • O’Gorman, P. A., and J. G. Dwyer, 2018: Using machine learning to parameterize moist convection: Potential for modeling of climate, climate change, and extreme events. J. Adv. Model. Earth Syst., 10, 25482563, https://doi.org/10.1029/2018MS001351.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 2019: Stochastic weather and climate models. Nat. Rev. Phys., 1, 463471, https://doi.org/10.1038/s42254-019-0062-2.

  • Pauluis, O., and S. Garner, 2006: Sensitivity of radiative–convective equilibrium simulations to horizontal resolution. J. Atmos. Sci., 63, 19101923, https://doi.org/10.1175/JAS3705.1.

    • Search Google Scholar
    • Export Citation
  • Phan, M. Q., R. K. Lim, and R. W. Longman, 1998: Unifying input-output and state-space perspectives of predictive control. Princeton University Dept. of Mechanical and Aerospace Engineering Tech. Rep. 3044, 35 pp.

  • Pintelon, R., and J. Schoukens, 2012: System Identification: A Frequency Domain Approach. 2nd ed. Wiley, 788 pp.

  • Rasp, S., M. S. Pritchard, and P. Gentine, 2018: Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA, 115, 96849689, https://doi.org/10.1073/pnas.1810286115.

    • Search Google Scholar
    • Export Citation
  • Schoukens, J., M. Vaes, and R. Pintelon, 2016: Linear system identification in a nonlinear setting: Nonparametric analysis of the nonlinear distortions and their impact on the best linear approximation. IEEE Control Syst. Mag., 36, 3869, https://doi.org/10.1109/MCS.2016.2535918.

    • Search Google Scholar
    • Export Citation
  • Shamekh, S., K. D. Lamb, Y. Huang, and P. Gentine, 2023: Implicit learning of convective organization explains precipitation stochasticity. Proc. Natl. Acad. Sci. USA, 120, e2216158120, https://doi.org/10.1073/pnas.2216158120.

    • Search Google Scholar
    • Export Citation
  • Tiao, G. C., and R. S. Tsay, 1989: Model specification in multivariate time series. J. Roy. Stat. Soc., 51B, 157195, https://doi.org/10.1111/j.2517-6161.1989.tb01756.x.

    • Search Google Scholar
    • Export Citation
  • Verhaegen, M., 1994: Identification of the deterministic part of MIMO state-space models given in innovations form from input-output data. Automatica, 30, 6174, https://doi.org/10.1016/0005-1098(94)90229-1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain. J. Atmos. Sci., 56, 374399, https://doi.org/10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuval, J., P. A. O’Gorman, and C. N. Hill, 2021: Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision. Geophys. Res. Lett., 48, e2020GL091363, https://doi.org/10.1029/2020GL091363.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 332 332 47
Full Text Views 138 138 21
PDF Downloads 178 178 25