On the Local Available Potential Energy Perspective of Baroclinic Wave Development

Marc Federer aInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Marc Federer in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2531-6234
,
Lukas Papritz aInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Lukas Papritz in
Current site
Google Scholar
PubMed
Close
,
Michael Sprenger aInstitute for Atmospheric and Climate Science, ETH Zürich, Zurich, Switzerland

Search for other papers by Michael Sprenger in
Current site
Google Scholar
PubMed
Close
,
Christian M. Grams bInstitute of Meteorology and Climate Research–Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Christian M. Grams in
Current site
Google Scholar
PubMed
Close
, and
Marta Wenta bInstitute of Meteorology and Climate Research–Department Troposphere Research (IMK-TRO), Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Marta Wenta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extratropical cyclones convert available potential energy (APE) to kinetic energy. However, our current understanding of APE conversion on synoptic scales is limited, as the well-established Lorenz APE framework is only applicable in a global, volume-integrated sense. Here, we employ a recently developed local APE framework to investigate APE and its tendencies in a highly idealized, dispersive baroclinic wave, which leads to the formation of a primary and a downstream cyclone. By utilizing a Lagrangian approach, we demonstrate that locally the downstream cyclone not only consumes APE but also generates it. Initially, APE is transported from both poleward and equatorward reservoirs into the baroclinic zone, where it is then consumed by the vertical displacement of air parcels associated with the developing cyclone. To a lesser extent, APE is also created within the cyclone when air parcels overshoot their reference state; i.e., air colder than its reference state is lifted and air warmer than its reference state is lowered. The volume integral of the APE tendency is dominated by slow vertical displacements of large air masses, whereas the dry intrusion (DI) and warm conveyor belt (WCB) of the cyclone are responsible for the largest local APE tendencies. Diabatic effects within the DI and WCB contribute to the generation of APE in regions where it is consumed adiabatically, thereby enhancing baroclinic conversion in situ. Our findings provide a comprehensive and mechanistic understanding of the local APE tendency on synoptic scales within an idealized setting and complement existing frameworks explaining the energetics of cyclone intensification.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marc Federer, marc.federer@env.ethz.ch

Abstract

Extratropical cyclones convert available potential energy (APE) to kinetic energy. However, our current understanding of APE conversion on synoptic scales is limited, as the well-established Lorenz APE framework is only applicable in a global, volume-integrated sense. Here, we employ a recently developed local APE framework to investigate APE and its tendencies in a highly idealized, dispersive baroclinic wave, which leads to the formation of a primary and a downstream cyclone. By utilizing a Lagrangian approach, we demonstrate that locally the downstream cyclone not only consumes APE but also generates it. Initially, APE is transported from both poleward and equatorward reservoirs into the baroclinic zone, where it is then consumed by the vertical displacement of air parcels associated with the developing cyclone. To a lesser extent, APE is also created within the cyclone when air parcels overshoot their reference state; i.e., air colder than its reference state is lifted and air warmer than its reference state is lowered. The volume integral of the APE tendency is dominated by slow vertical displacements of large air masses, whereas the dry intrusion (DI) and warm conveyor belt (WCB) of the cyclone are responsible for the largest local APE tendencies. Diabatic effects within the DI and WCB contribute to the generation of APE in regions where it is consumed adiabatically, thereby enhancing baroclinic conversion in situ. Our findings provide a comprehensive and mechanistic understanding of the local APE tendency on synoptic scales within an idealized setting and complement existing frameworks explaining the energetics of cyclone intensification.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Marc Federer, marc.federer@env.ethz.ch

Supplementary Materials

    • Supplemental Materials (PDF 2.3492 MB)
Save
  • Andrews, D. G., 1981: A note on potential energy density in a stratified compressible fluid. J. Fluid Mech., 107, 227236, https://doi.org/10.1017/S0022112081001754.

    • Search Google Scholar
    • Export Citation
  • Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere winter. J. Atmos. Sci., 73, 39974020, https://doi.org/10.1175/JAS-D-15-0302.1.

    • Search Google Scholar
    • Export Citation
  • Binder, H., H. Joos, M. Sprenger, and H. Wernli, 2023: Warm conveyor belts in present-day and future climate simulations—Part 2: Role of potential vorticity production for cyclone intensification. Wea. Climate Dyn., 4, 1937, https://doi.org/10.5194/wcd-4-19-2023.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1971: Radar measurements of air motion near fronts. Weather, 26, 320340, https://doi.org/10.1002/j.1477-8696.1971.tb04211.x.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1990: Organization of clouds and precipitation in extratropical cyclones. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 129–153.

  • Browning, K. A., and B. W. Golding, 1995: Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quart. J. Roy. Meteor. Soc., 121, 463493, https://doi.org/10.1002/qj.49712152302.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., S. L. Gray, and J. Methven, 2013: Diabatic processes modifying potential vorticity in a North Atlantic cyclone. Quart. J. Roy. Meteor. Soc., 139, 12701282, https://doi.org/10.1002/qj.2037.

    • Search Google Scholar
    • Export Citation
  • Gertler, C. G., and P. A. O’Gorman, 2019: Changing available energy for extratropical cyclones and associated convection in Northern Hemisphere summer. Proc. Natl. Acad. Sci. USA, 116, 41054110, https://doi.org/10.1073/pnas.1812312116.

    • Search Google Scholar
    • Export Citation
  • Gertler, C. G., P. A. O’Gorman, and S. Pfahl, 2023: Moist available potential energy of the mean state of the atmosphere and the thermodynamic potential for warm conveyor belts and convection. Wea. Climate Dyn., 4, 361379, https://doi.org/10.5194/wcd-4-361-2023.

    • Search Google Scholar
    • Export Citation
  • Grams, C. M., and Coauthors, 2011: The key role of diabatic processes in modifying the upper-tropospheric wave guide: A North Atlantic case-study. Quart. J. Roy. Meteor. Soc., 137, 21742193, https://doi.org/10.1002/qj.891.

    • Search Google Scholar
    • Export Citation
  • Harrold, T. W., 1973: Mechanisms influencing the distribution of precipitation within baroclinic disturbances. Quart. J. Roy. Meteor. Soc., 99, 232251, https://doi.org/10.1002/qj.49709942003.

    • Search Google Scholar
    • Export Citation
  • Holliday, D., and M. E. McIntyre, 1981: On potential energy density in an incompressible, stratified fluid. J. Fluid Mech., 107, 221225, https://doi.org/10.1017/S0022112081001742.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. R., 1970: The available potential energy of storms. J. Atmos. Sci., 27, 727741, https://doi.org/10.1175/1520-0469(1970)027<0727:TAPEOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., and P. A. O’Gorman, 2020: Response of vertical velocities in extratropical precipitation extremes to climate change. J. Climate, 33, 71257139, https://doi.org/10.1175/JCLI-D-19-0766.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. Tellus, 7A, 157167, https://doi.org/10.3402/tellusa.v7i2.8796.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1979: Numerical evaluation of moist available energy. Tellus, 31A, 230235, https://doi.org/10.3402/tellusa.v31i3.10429.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Margules, M., 1903: Über die Energie der Stürme. Jahrbücher Zentralanst. Meteor. Erdmagn., 40, 1–26.

  • Novak, L., and R. Tailleux, 2018: On the local view of atmospheric available potential energy. J. Atmos. Sci., 75, 18911907, https://doi.org/10.1175/JAS-D-17-0330.1.

    • Search Google Scholar
    • Export Citation
  • Oort, A. H., 1964: On estimates of the atmospheric energy cycle. Mon. Wea. Rev., 92, 483493, https://doi.org/10.1175/1520-0493(1964)092<0483:OEOTAE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. Katzfey, 1991: The life cycle of a cyclone wave in the Southern Hemisphere. Part I: Eddy energy budget. J. Atmos. Sci., 48, 19721998, https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., and J. P. Sheldon, 1995: Stages in the energetics of baroclinic systems. Tellus, 47A, 605628, https://doi.org/10.3402/tellusa.v47i5.11553.

    • Search Google Scholar
    • Export Citation
  • Papritz, L., and S. Schemm, 2013: Development of an idealised downstream cyclone: Eulerian and Lagrangian perspective on the kinetic energy. Tellus, 65A, 19539, https://doi.org/10.3402/tellusa.v65i0.19539.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1974: The annual distribution of atmospheric energy on a planetary scale. J. Geophys. Res., 79, 21492159, https://doi.org/10.1029/JC079i015p02149.

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., C. Schwierz, M. Croci-Maspoli, C. M. Grams, and H. Wernli, 2015: Importance of latent heat release in ascending air streams for atmospheric blocking. Nat. Geosci., 8, 610614, https://doi.org/10.1038/ngeo2487.

    • Search Google Scholar
    • Export Citation
  • Raveh-Rubin, S., 2017: Dry intrusions: Lagrangian climatology and dynamical impact on the planetary boundary layer. J. Climate, 30, 66616682, https://doi.org/10.1175/JCLI-D-16-0782.1.

    • Search Google Scholar
    • Export Citation
  • Rivière, G., P. Arbogast, and A. Joly, 2015: Eddy kinetic energy redistribution within idealized extratropical cyclones using a two-layer quasi-geostrophic model. Quart. J. Roy. Meteor. Soc., 141, 207223, https://doi.org/10.1002/qj.2350.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., and G. Rivière, 2019: On the efficiency of baroclinic eddy growth and how it reduces the North Pacific storm-track intensity in midwinter. J. Climate, 32, 83738398, https://doi.org/10.1175/JCLI-D-19-0115.1.

    • Search Google Scholar
    • Export Citation
  • Schemm, S., H. Wernli, and L. Papritz, 2013: Warm conveyor belts in idealized moist baroclinic wave simulations. J. Atmos. Sci., 70, 627652, https://doi.org/10.1175/JAS-D-12-0147.1.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and D. Keyser, 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones: The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191, https://doi.org/10.1007/978-1-944970-33-8_10.

  • Smith, P. J., 1969: On the contribution of a limited region to the global energy budget. Tellus, 21A, 202207, https://doi.org/10.3402/tellusa.v21i2.10074.

    • Search Google Scholar
    • Export Citation
  • Smith, P. J., 1980: The energetics of extratropical cyclones. Rev. Geophys., 18, 378386, https://doi.org/10.1029/RG018i002p00378.

  • Sprenger, M., and H. Wernli, 2015: The LAGRANTO Lagrangian analysis tool—Version 2.0. Geosci. Model Dev., 8, 25692586, https://doi.org/10.5194/gmd-8-2569-2015.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., G. Doms, U. Schättler, H. W. Bitzer, A. Gassmann, U. Damrath, and G. Gregoric, 2003: Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys., 82, 7596, https://doi.org/10.1007/s00703-001-0592-9.

    • Search Google Scholar
    • Export Citation
  • Tailleux, R., 2018: Local available energetics of multicomponent compressible stratified fluids. J. Fluid Mech., 842, R1, https://doi.org/10.1017/jfm.2018.196.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., 1997: A Lagrangian-based analysis of extratropical cyclones. II: A detailed case-study. Quart. J. Roy. Meteor. Soc., 123, 16771706, https://doi.org/10.1002/qj.49712354211.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., and H. C. Davies, 1997: A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quart. J. Roy. Meteor. Soc., 123, 467489, https://doi.org/10.1002/qj.49712353811.

    • Search Google Scholar
    • Export Citation
  • Wirth, V., M. Riemer, E. K. M. Chang, and O. Martius, 2018: Rossby wave packets on the midlatitude waveguide—A review. Mon. Wea. Rev., 146, 19652001, https://doi.org/10.1175/MWR-D-16-0483.1.

    • Search Google Scholar
    • Export Citation
  • Young, M. V., G. A. Monk, and K. A. Browning, 1987: Interpretation of satellite imagery of a rapidly deepening cyclone. Quart. J. Roy. Meteor. Soc., 113, 10891115, https://doi.org/10.1002/qj.49711347803.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2796 2581 38
Full Text Views 782 693 408
PDF Downloads 551 433 57