The Stochastic Spinup of Vorticity in Spontaneous Tropical Cyclogenesis

Hao Fu aDepartment of Earth System Science, Stanford University, Stanford, California
bDepartment of the Geophysical Sciences, University of Chicago, Chicago, Illinois

Search for other papers by Hao Fu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9524-0001
and
Morgan E. O’Neill aDepartment of Earth System Science, Stanford University, Stanford, California
cDepartment of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Morgan E. O’Neill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud-permitting simulations have shown that tropical cyclones (TCs) can form spontaneously in a quiescent environment with uniform sea surface temperature. While several mesoscale feedbacks are known to amplify an existing midlevel vortex, how the noisy deep convection produces the initial midlevel vortex remains unclear. This paper develops a theoretical framework to understand the evolution of the midlevel mesoscale vorticity’s histogram in the first two days of spontaneous tropical cyclogenesis, which we call the “stochastic spinup stage.” The mesoscale vorticity is produced by two random processes related to deep convection: the random stretching of planetary vorticity f and the tilting of random vertical shear. With the central limit theorem, the mesoscale vorticity is modeled as the sum of three independent normal distributions, which include the cyclones produced by stretching, cyclones produced by tilting, and anticyclones produced by tilting. The theory predicts that the midlevel mesoscale vorticity obeys a normal distribution, and its standard deviation is universally proportional to the square root of the domain-averaged accumulated rainfall, agreeing with simulations. The theory also predicts a critical latitude below which tilting is dominant in producing mesoscale vorticity. Treating the magnitude of random vertical shear as a fitting parameter, the critical latitude is shown to be around 12°N. Because the magnitude of vertical shear should be larger in the real atmosphere, this result suggests that tilting is an important source of mesoscale vorticity fluctuation in the tropics.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hao Fu, haofu736@gmail.com

Abstract

Cloud-permitting simulations have shown that tropical cyclones (TCs) can form spontaneously in a quiescent environment with uniform sea surface temperature. While several mesoscale feedbacks are known to amplify an existing midlevel vortex, how the noisy deep convection produces the initial midlevel vortex remains unclear. This paper develops a theoretical framework to understand the evolution of the midlevel mesoscale vorticity’s histogram in the first two days of spontaneous tropical cyclogenesis, which we call the “stochastic spinup stage.” The mesoscale vorticity is produced by two random processes related to deep convection: the random stretching of planetary vorticity f and the tilting of random vertical shear. With the central limit theorem, the mesoscale vorticity is modeled as the sum of three independent normal distributions, which include the cyclones produced by stretching, cyclones produced by tilting, and anticyclones produced by tilting. The theory predicts that the midlevel mesoscale vorticity obeys a normal distribution, and its standard deviation is universally proportional to the square root of the domain-averaged accumulated rainfall, agreeing with simulations. The theory also predicts a critical latitude below which tilting is dominant in producing mesoscale vorticity. Treating the magnitude of random vertical shear as a fitting parameter, the critical latitude is shown to be around 12°N. Because the magnitude of vertical shear should be larger in the real atmosphere, this result suggests that tilting is an important source of mesoscale vorticity fluctuation in the tropics.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hao Fu, haofu736@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 0.2978 MB)
Save
  • Ahmed, F., and J. D. Neelin, 2019: Explaining scales and statistics of tropical precipitation clusters with a stochastic model. J. Atmos. Sci., 76, 30633087, https://doi.org/10.1175/JAS-D-18-0368.1.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and M. T. Montgomery, 2019: Mesoscale processes during the genesis of Hurricane Karl (2010). J. Atmos. Sci., 76, 22352255, https://doi.org/10.1175/JAS-D-18-0161.1.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., M. Colella, M. Briscolini, and P. Santangelo, 1992: A simple point vortex model for two-dimensional decaying turbulence. Phys. Fluids, 4, 10361039, https://doi.org/10.1063/1.858254.

    • Search Google Scholar
    • Export Citation
  • Biagioli, G., and A. M. Tompkins, 2023: A dimensionless parameter for predicting convective self-aggregation onset in a stochastic reaction-diffusion model of tropical radiative-convective equilibrium. J. Adv. Model. Earth Syst., 15, e2022MS003231, https://doi.org/10.1029/2022MS003231.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1997: The genesis of Hurricane Guillermo: TEXMEX analyses and a modeling study. Mon. Wea. Rev., 125, 26622682, https://doi.org/10.1175/1520-0493(1997)125<2662:TGOHGT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brenowitz, N. D., Y. Frenkel, and A. J. Majda, 2016: Non-local convergence coupling in a simple stochastic convection model. Dyn. Atmos. Oceans, 74, 3049, https://doi.org/10.1016/j.dynatmoce.2016.04.004.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., J. C. McWilliams, Y. Pomeau, J. B. Weiss, and W. R. Young, 1991: Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett., 66, 27352737, https://doi.org/10.1103/PhysRevLett.66.2735.

    • Search Google Scholar
    • Export Citation
  • Carstens, J. D., and A. A. Wing, 2020: Tropical cyclogenesis from self-aggregated convection in numerical simulations of rotating radiative-convective equilibrium. J. Adv. Model. Earth Syst., 12, e2019MS002020, https://doi.org/10.1029/2019MS002020.

    • Search Google Scholar
    • Export Citation
  • Carstens, J. D., and A. A. Wing, 2022: A spectrum of convective self-aggregation based on background rotation. J. Adv. Model. Earth Syst., 14, e2021MS002860, https://doi.org/10.1029/2021MS002860.

    • Search Google Scholar
    • Export Citation
  • Caulfield, C., 2021: Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech., 53, 113145, https://doi.org/10.1146/annurev-fluid-042320-100458.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Craig, G. C., and J. M. Mack, 2013: A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos., 118, 87618769, https://doi.org/10.1002/jgrd.50674.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 2015: The formation of moist vortices and tropical cyclones in idealized simulations. J. Atmos. Sci., 72, 34993516, https://doi.org/10.1175/JAS-D-15-0027.1.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 55875646, https://doi.org/10.5194/acp-9-5587-2009.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2018: 100 years of progress in tropical cyclone research. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0016.1.

  • Fernando, H. J. S., 1991: Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech., 23, 455493, https://doi.org/10.1146/annurev.fl.23.010191.002323.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., and R. A. Houze Jr., 1989: One-dimensional time-dependent modeling of GATE cumulonimbus convection. J. Atmos. Sci., 46, 330352, https://doi.org/10.1175/1520-0469(1989)046<0330:ODTDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, H., 2021: A linear stability analysis of two-layer moist convection with a saturation interface. J. Fluid Mech., 928, A13, https://doi.org/10.1017/jfm.2021.784.

    • Search Google Scholar
    • Export Citation
  • Fu, H., and M. O’Neill, 2021: The role of random vorticity stretching in tropical depression genesis. J. Atmos. Sci., 78, 41434168, https://doi.org/10.1175/JAS-D-21-0087.1.

    • Search Google Scholar
    • Export Citation
  • Fu, H., and M. O’Neill, 2024: The small-amplitude dynamics of spontaneous tropical cyclogenesis. Part I: Experiments with amplified longwave radiative feedback. J. Atmos. Sci., 81, 381399, https://doi.org/10.1175/JAS-D-23-0170.1.

    • Search Google Scholar
    • Export Citation
  • Gjorgjievska, S., and D. J. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 30653082, https://doi.org/10.5194/acp-14-3065-2014.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1998: The formation of tropical cyclones. Meteor. Atmos. Phys., 67, 3769, https://doi.org/10.1007/BF01277501.

  • Gray, W. M., and R. W. Jacobson Jr., 1977: Diurnal variation of deep cumulus convection. Mon. Wea. Rev., 105, 11711188, https://doi.org/10.1175/1520-0493(1977)105<1171:DVODCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., R. S. Plant, C. E. Holloway, and T. R. Jones, 2021: Composited structure of non-precipitating shallow cumulus clouds. Quart. J. Roy. Meteor. Soc., 147, 28182833, https://doi.org/10.1002/qj.4101.

    • Search Google Scholar
    • Export Citation
  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841, https://doi.org/10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. T. Montgomery, and C. A. Davis, 2004: The role of “vortical” hot towers in the formation of Tropical Cyclone Diana (1984). J. Atmos. Sci., 61, 12091232, https://doi.org/10.1175/1520-0469(2004)061<1209:TROVHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hottovy, S., and S. N. Stechmann, 2015: A spatiotemporal stochastic model for tropical precipitation and water vapor dynamics. J. Atmos. Sci., 72, 47214738, https://doi.org/10.1175/JAS-D-15-0119.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., W.-C. Lee, and M. M. Bell, 2009: Convective contribution to the genesis of Hurricane Ophelia (2005). Mon. Wea. Rev., 137, 27782800, https://doi.org/10.1175/2009MWR2727.1.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and K. Emanuel, 2013: Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J. Adv. Model. Earth Syst., 5, 816825, https://doi.org/10.1002/2013MS000253.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall, 2009: Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1 (4), https://doi.org/10.3894/JAMES.2009.1.15.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2013: A numerical study of rotating convection during tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 139, 12551269, https://doi.org/10.1002/qj.2022.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and U. Wissmeier, 2014: Tropical convection: The effects of ambient vertical and horizontal vorticity. Quart. J. Roy. Meteor. Soc., 140, 17561770, https://doi.org/10.1002/qj.2261.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G., R. K. Smith, and M. T. Montgomery, 2017: A unified view of tropical cyclogenesis and intensification. Quart. J. Roy. Meteor. Soc., 143, 450462, https://doi.org/10.1002/qj.2934.

    • Search Google Scholar
    • Export Citation
  • Li, L., A. P. Ingersoll, and X. Huang, 2006: Interaction of moist convection with zonal jets on Jupiter and Saturn. Icarus, 180, 113123, https://doi.org/10.1016/j.icarus.2005.08.016.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1983: Stratified turbulence and the mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749761, https://doi.org/10.1175/1520-0469(1983)040<0749:STATMV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and M. W. Moncrieff, 2004: Effects of convectively generated gravity waves and rotation on the organization of convection. J. Atmos. Sci., 61, 22182227, https://doi.org/10.1175/1520-0469(2004)061<2218:EOCGGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037, https://doi.org/10.1175/1520-0469(1993)050<2026:GTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1997: Equilibrium vs. activation control of large-scale variations of tropical deep convection. The Physics and Parameterization of Moist Atmospheric Convection, Springer, 321–358.

  • Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355386, https://doi.org/10.1175/JAS3604.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci., 69, 25512565, https://doi.org/10.1175/JAS-D-11-0257.1.

    • Search Google Scholar
    • Export Citation
  • Muller, C. J., and D. M. Romps, 2018: Acceleration of tropical cyclogenesis by self-aggregation feedbacks. Proc. Natl. Acad. Sci. USA, 115, 29302935, https://doi.org/10.1073/pnas.1719967115.

    • Search Google Scholar
    • Export Citation
  • Nam, C. C., M. M. Bell, and D. Tao, 2023: Bifurcation points for tropical cyclone genesis and intensification in sheared and dry environments. J. Atmos. Sci., 80, 22392259, https://doi.org/10.1175/JAS-D-22-0100.1.

    • Search Google Scholar
    • Export Citation
  • Nissen, S. B., and J. O. Haerter, 2021: Circling in on convective self-aggregation. J. Geophys. Res. Atmos., 126, e2021JD035331, https://doi.org/10.1029/2021JD035331.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, https://doi.org/10.1002/qj.170.

    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., K. A. Emanuel, and G. R. Flierl, 2016: Weak jets and strong cyclones: Shallow-water modeling of giant planet polar caps. J. Atmos. Sci., 73, 18411855, https://doi.org/10.1175/JAS-D-15-0314.1.

    • Search Google Scholar
    • Export Citation
  • Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369380, https://doi.org/10.2151/jmsj1965.60.1_369.

    • Search Google Scholar
    • Export Citation
  • Pishro-Nik, H., 2016: Introduction to Probability, Statistics, and Random Processes. Kappa Research, 746 pp.

  • Ramírez Reyes, A., and D. Yang, 2021: Spontaneous cyclogenesis without radiative and surface-flux feedbacks. J. Atmos. Sci., 78, 41694184, https://doi.org/10.1175/JAS-D-21-0098.1.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811, https://doi.org/10.1029/2006GL028607.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., S. L. Sessions, and C. López Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res., 116, D18101, https://doi.org/10.1029/2011JD015624.

    • Search Google Scholar
    • Export Citation
  • Riley, J. J., and M.-P. Lelong, 2000: Fluid motions in the presence of strong stable stratification. Annu. Rev. Fluid Mech., 32, 613657, https://doi.org/10.1146/annurev.fluid.32.1.613.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 20272043, https://doi.org/10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275, https://doi.org/10.1175/1520-0469(1996)053<3265:MCSSIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2014: An analytical model for tropical relative humidity. J. Climate, 27, 74327449, https://doi.org/10.1175/JCLI-D-14-00255.1.

    • Search Google Scholar
    • Export Citation
  • Ruppert, J. H., Jr., A. A. Wing, X. Tang, and E. L. Duran, 2020: The critical role of cloud–infrared radiation feedback in tropical cyclone development. Proc. Natl. Acad. Sci. USA, 117, 27 88427 892, https://doi.org/10.1073/pnas.2013584117.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and G. Torri, 2023: The observed effects of cold pools on convection triggering and organization during DYNAMO/AMIE. J. Geophys. Res. Atmos., 128, e2023JD038635, https://doi.org/10.1029/2023JD038635.

    • Search Google Scholar
    • Export Citation
  • Schader, M., and F. Schmid, 1989: Two rules of thumb for the approximation of the binomial distribution by the normal distribution. Amer. Stat., 43, 2324, https://doi.org/10.1080/00031305.1989.10475601.

    • Search Google Scholar
    • Export Citation
  • Schneider, E. K., and R. S. Lindzen, 1976: A discussion of the parameterization of momentum exchange by cumulus convection. J. Geophys. Res., 81, 31583160, https://doi.org/10.1029/JC081i018p03158.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., 2007: Numerical simulations of forced shallow-water turbulence: Effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci., 64, 31323157, https://doi.org/10.1175/JAS4007.1.

    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2015: Effects of vertical wind shear on the predictability of tropical cyclones: Practical versus intrinsic limit. J. Adv. Model. Earth Syst., 7, 15341553, https://doi.org/10.1002/2015MS000474.

    • Search Google Scholar
    • Export Citation
  • Thomson, S. I., and M. E. McIntyre, 2016: Jupiter’s unearthly jets: A new turbulent model exhibiting statistical steadiness without large-scale dissipation. J. Atmos. Sci., 73, 11191141, https://doi.org/10.1175/JAS-D-14-0370.1.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., and G. C. Craig, 1998: Time-scales of adjustment to radiative-convective equilibrium in the tropical atmosphere. Quart. J. Roy. Meteor. Soc., 124, 26932713, https://doi.org/10.1002/qj.49712455208.

    • Search Google Scholar
    • Export Citation
  • Torri, G., and Z. Kuang, 2019: On cold pool collisions in tropical boundary layers. Geophys. Res. Lett., 46, 399407, https://doi.org/10.1029/2018GL080501.

    • Search Google Scholar
    • Export Citation
  • Tory, K. J., and W. M. Frank, 2010: Tropical cyclone formation. Global Perspectives on Tropical Cyclones: From Science to Mitigation, World Scientific, 55–91.

  • Trizac, E., 1998: A coalescence model for freely decaying two-dimensional turbulence. Europhys. Lett., 43, 671676, https://doi.org/10.1209/epl/i1998-00415-5.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 946 pp.

  • Vallis, G. K., G. J. Shutts, and M. E. B. Gray, 1997: Balanced mesoscale motion and stratified turbulence forced by convection. Quart. J. Roy. Meteor. Soc., 123, 16211652, https://doi.org/10.1002/qj.49712354209.

    • Search Google Scholar
    • Export Citation
  • van der Wiel, K., S. T. Gille, S. G. Llewellyn Smith, P. F. Linden, and C. Cenedese, 2017: Characteristics of colliding sea breeze gravity current fronts: A laboratory study. Quart. J. Roy. Meteor. Soc., 143, 14341441, https://doi.org/10.1002/qj.3015.

    • Search Google Scholar
    • Export Citation
  • Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteor. Soc., 134, 563582, https://doi.org/10.1002/qj.235.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010: Genesis of pre–Hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 17301744, https://doi.org/10.1175/2010JAS3435.1.

    • Search Google Scholar
    • Export Citation
  • Windmiller, J. M., and G. C. Craig, 2019: Universality in the spatial evolution of self-aggregation of tropical convection. J. Atmos. Sci., 76, 16771696, https://doi.org/10.1175/JAS-D-18-0129.1.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., S. J. Camargo, and A. H. Sobel, 2016: Role of radiative–convective feedbacks in spontaneous tropical cyclogenesis in idealized numerical simulations. J. Atmos. Sci., 73, 26332642, https://doi.org/10.1175/JAS-D-15-0380.1.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., K. Emanuel, C. E. Holloway, and C. Muller, 2018: Convective self-aggregation in numerical simulations: A review. Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity, Springer 1–25.

  • Yang, B., and Z.-M. Tan, 2020: Interactive radiation accelerates the intensification of the midlevel vortex for tropical cyclogenesis. J. Atmos. Sci., 77, 40514065, https://doi.org/10.1175/JAS-D-20-0094.1.

    • Search Google Scholar
    • Export Citation
  • Yang, D., 2021: A shallow water model for convective self-aggregation. J. Atmos. Sci., 78, 571582, https://doi.org/10.1175/JAS-D-20-0031.1.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and A. P. Ingersoll, 2013: Triggered convection, gravity waves, and the MJO: A shallow-water model. J. Atmos. Sci., 70, 24762486, https://doi.org/10.1175/JAS-D-12-0255.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., L. R. Leung, Z. Feng, F. Song, and X. Chen, 2021: A simple Lagrangian parcel model for the initiation of summertime mesoscale convective systems over the central United States. J. Atmos. Sci., 78, 35373558, https://doi.org/10.1175/JAS-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Y. Q. Sun, L. Magnusson, R. Buizza, S.-J. Lin, J.-H. Chen, and K. Emanuel, 2019: What is the predictability limit of midlatitude weather? J. Atmos. Sci., 76, 10771091, https://doi.org/10.1175/JAS-D-18-0269.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 579 580 68
Full Text Views 239 239 52
PDF Downloads 278 278 77