Influence of Lake Breezes on the Triggering of Moist Convection on the Tibetan Plateau: A Large-Eddy Simulation Study

Yunshuai Zhang aLand-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
bCollege of Atmospheric Science, Lanzhou University, Lanzhou, China

Search for other papers by Yunshuai Zhang in
Current site
Google Scholar
PubMed
Close
,
Cunbo Han aLand-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
dNational Observation and Research Station for Qomolangma Special Atmospheric Processes and Environmental Changes, Dingri, China
fChina-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad, Pakistan

Search for other papers by Cunbo Han in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9422-3031
,
Yaoming Ma aLand-Atmosphere Interaction and its Climatic Effects Group, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
bCollege of Atmospheric Science, Lanzhou University, Lanzhou, China
cCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
dNational Observation and Research Station for Qomolangma Special Atmospheric Processes and Environmental Changes, Dingri, China
eKathmandu Center of Research and Education, Chinese Academy of Sciences, Beijing, China
fChina-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences, Islamabad, Pakistan

Search for other papers by Yaoming Ma in
Current site
Google Scholar
PubMed
Close
,
Shizuo Fu gKey Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China

Search for other papers by Shizuo Fu in
Current site
Google Scholar
PubMed
Close
,
Hongchao Zuo bCollege of Atmospheric Science, Lanzhou University, Lanzhou, China

Search for other papers by Hongchao Zuo in
Current site
Google Scholar
PubMed
Close
, and
Qian Huang bCollege of Atmospheric Science, Lanzhou University, Lanzhou, China

Search for other papers by Qian Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Applying 1D surface heterogeneity and observed atmospheric vertical profiles as initial conditions, two sets of large-eddy simulation experiments provided insight into the influence of lake size and soil moisture (SM) on the development of lake breezes and moist convection over land beside the lake. When the lake diameter increased from 20 km to 50 and 70 km, the maximum precipitation increased by 71.4% and 1.29 times, respectively. There are two reasons for larger precipitation over land in large-lake simulations: 1) Stronger and broader updrafts were found near the lake-breeze front (LBF); 2) the air at 2–4 km was moister, probably because more water vapor below 2 km was advected by the lake breezes and transported upward through turbulent exchange. Moreover, when the lake diameter increased from 20 km to more than 50 km, the deep moist convection (DMC) occurred 20 min earlier. This may be related to broader shallow convective cloud and larger vertical velocity of cloud-initiating parcels in large-lake simulations. Shallow moist convection transitioned to DMC earlier with broader clouds under moderate and high soil moisture conditions. Notably, stronger and broader updrafts near the LBFs, along with the advection of moisture induced by the lake breezes, caused the shallow moist convection to reach its peak 1 h earlier in the driest soil moisture case. However, smaller evapotranspiration could not provide sufficient moisture for the development of DMC. Our simulation results show that lake-breeze circulations are essential for the development of moist convections in the lake region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Cunbo Han, cunbo.han@itpcas.ac.cn; Yaoming Ma, ymma@itpcas.ac.cn

Abstract

Applying 1D surface heterogeneity and observed atmospheric vertical profiles as initial conditions, two sets of large-eddy simulation experiments provided insight into the influence of lake size and soil moisture (SM) on the development of lake breezes and moist convection over land beside the lake. When the lake diameter increased from 20 km to 50 and 70 km, the maximum precipitation increased by 71.4% and 1.29 times, respectively. There are two reasons for larger precipitation over land in large-lake simulations: 1) Stronger and broader updrafts were found near the lake-breeze front (LBF); 2) the air at 2–4 km was moister, probably because more water vapor below 2 km was advected by the lake breezes and transported upward through turbulent exchange. Moreover, when the lake diameter increased from 20 km to more than 50 km, the deep moist convection (DMC) occurred 20 min earlier. This may be related to broader shallow convective cloud and larger vertical velocity of cloud-initiating parcels in large-lake simulations. Shallow moist convection transitioned to DMC earlier with broader clouds under moderate and high soil moisture conditions. Notably, stronger and broader updrafts near the LBFs, along with the advection of moisture induced by the lake breezes, caused the shallow moist convection to reach its peak 1 h earlier in the driest soil moisture case. However, smaller evapotranspiration could not provide sufficient moisture for the development of DMC. Our simulation results show that lake-breeze circulations are essential for the development of moist convections in the lake region.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Cunbo Han, cunbo.han@itpcas.ac.cn; Yaoming Ma, ymma@itpcas.ac.cn

Supplementary Materials

    • Supplemental Materials (PDF 0.7260 MB)
Save
  • Allouche, M., E. Bou-Zeid, and J. Iipponen, 2023a: The influence of synoptic wind on land–sea breezes. Quart. J. Roy. Meteor. Soc., 149, 31983219, https://doi.org/10.1002/qj.4552.

    • Search Google Scholar
    • Export Citation
  • Allouche, M., E. Bou-Zeid, and J. Iipponen, 2023b: Unsteady land-sea breeze circulations in the presence of a synoptic pressure forcing. arXiv, 2401.00863v1, https://doi.org/10.48550/arXiv.2401.00863.

  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, https://doi.org/10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Azorin-Molina, C., and D. Chen, 2009: A climatological study of the influence of synoptic-scale flows on sea breeze evolution in the Bay of Alicante (Spain). Theor. Appl. Climatol., 96, 249260, https://doi.org/10.1007/s00704-008-0028-2.

    • Search Google Scholar
    • Export Citation
  • Bai, L., Z. Meng, Y. Huang, Y. Zhang, S. Niu, and T. Su, 2019: Convection initiation resulting from the interaction between a quasi-stationary dryline and intersecting gust fronts: A case study. J. Geophys. Res. Atmos., 124, 23792396, https://doi.org/10.1029/2018JD029832.

    • Search Google Scholar
    • Export Citation
  • Bai, L., G. Chen, and L. Huang, 2020: Convection initiation in monsoon coastal areas (South China). Geophys. Res. Lett., 47, e2020GL087035, https://doi.org/10.1029/2020GL087035.

    • Search Google Scholar
    • Export Citation
  • Bauer, T. J., 2020: Interaction of urban heat island effects and land–sea breezes during a New York City heat event. J. Appl. Meteor. Climatol., 59, 477495, https://doi.org/10.1175/JAMC-D-19-0061.1.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., X. Wu, Y. Yin, Q. Huang, and H. Xiao, 2017: Characteristics of cloud systems over the Tibetan Plateau and east China during boreal summer. J. Climate, 30, 31173137, https://doi.org/10.1175/JCLI-D-16-0169.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., S. Hagos, H. Xiao, J. D. Fast, and Z. Feng, 2020: Characterization of surface heterogeneity-induced convection using cluster analysis. J. Geophys. Res. Atmos., 125, e2020JD032550, https://doi.org/10.1029/2020JD032550.

    • Search Google Scholar
    • Export Citation
  • Chen, R., and L. Tomassini, 2015: The role of moisture in summertime low-level jet formation and associated rainfall over the East Asian monsoon region. J. Atmos. Sci., 72, 38713890, https://doi.org/10.1175/JAS-D-15-0064.1.

    • Search Google Scholar
    • Export Citation
  • Cioni, G., and C. Hohenegger, 2017: Effect of soil moisture on diurnal convection and precipitation in large-eddy simulations. J. Hydrometeor., 18, 18851903, https://doi.org/10.1175/JHM-D-16-0241.1.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2012: Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability. Bound.-Layer Meteor., 144, 309328, https://doi.org/10.1007/s10546-012-9721-x.

    • Search Google Scholar
    • Export Citation
  • Daggupaty, S. M., 2001: A case study of the simultaneous development of multiple lake-breeze fronts with a boundary layer forecast model. J. Appl. Meteor., 40, 289311, https://doi.org/10.1175/1520-0450(2001)040<0289:ACSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, Y., L. Wang, T. Yao, X. Li, L. Zhu, and X. Zhang, 2018: Observed and simulated lake effect precipitation over the Tibetan Plateau: An initial study at Nam Co Lake. J. Geophys. Res. Atmos., 123, 67466759, https://doi.org/10.1029/2018JD028330.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2013: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmos. Chem. Phys., 13, 77957811, https://doi.org/10.5194/acp-13-7795-2013.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Deng, A., N. L. Seaman, and J. S. Kain, 2003: A shallow-convection parameterization for mesoscale models. Part I: Submodel description and preliminary applications. J. Atmos. Sci., 60, 3456, https://doi.org/10.1175/1520-0469(2003)060<0034:ASCPFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eltahir, E. A. B., 1998: A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour. Res., 34, 765776, https://doi.org/10.1029/97WR03499.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., L. K. Berg, Z. Feng, F. Mei, R. Newsom, K. Sakaguchi, and H. Xiao, 2019: The impact of variable land-atmosphere coupling on convective cloud populations observed during the 2016 HI-SCALE field campaign. J. Adv. Model. Earth Syst., 11, 26292654, https://doi.org/10.1029/2019MS001727.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. H. Shaw, and E. G. Patton, 2009: Turbulence structure above a vegetation canopy. J. Fluid Mech., 637, 387424, https://doi.org/10.1017/S0022112009990589.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, S. M. Quiring, and J. Blake, 2015: Soil moisture–precipitation coupling: Observations from the Oklahoma Mesonet and underlying physical mechanisms. Hydrol. Earth Syst. Sci., 19, 36173631, https://doi.org/10.5194/hess-19-3617-2015.

    • Search Google Scholar
    • Export Citation
  • Fu, S., R. Rotunno, J. Chen, X. Deng, and H. Xue, 2021: A large-eddy simulation study of deep-convection initiation through the collision of two sea-breeze fronts. Atmos. Chem. Phys., 21, 92899308, https://doi.org/10.5194/acp-21-9289-2021.

    • Search Google Scholar
    • Export Citation
  • Fu, S., R. Rotunno, and H. Xue, 2022: Convective updrafts near sea-breeze fronts. Atmos. Chem. Phys., 22, 77277738, https://doi.org/10.5194/acp-22-7727-2022.

    • Search Google Scholar
    • Export Citation
  • Fu, Y., and Coauthors, 2020: Land-surface processes and summer-cloud-precipitation characteristics in the Tibetan Plateau and their effects on downstream weather: A review and perspective. Natl. Sci. Rev., 7, 500515, https://doi.org/10.1093/nsr/nwz226.

    • Search Google Scholar
    • Export Citation
  • Gu, H., J. Jin, Y. Wu, M. B. Ek, and Z. M. Subin, 2015: Calibration and validation of lake surface temperature simulations with the coupled WRF-Lake model. Climatic Change, 129, 471483, https://doi.org/10.1007/s10584-013-0978-y.

    • Search Google Scholar
    • Export Citation
  • Haghi, K. R., D. B. Parsons, and A. Shapiro, 2017: Bores observed during IHOP_2002: The relationship of bores to the nocturnal environment. Mon. Wea. Rev., 145, 39293946, https://doi.org/10.1175/MWR-D-16-0415.1.

    • Search Google Scholar
    • Export Citation
  • Han, C., S. Brdar, and S. Kollet, 2019: Response of convective boundary layer and shallow cumulus to soil moisture heterogeneity: A large-eddy simulation study. J. Adv. Model. Earth Syst., 11, 43054322, https://doi.org/10.1029/2019MS001772.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., P. Brockhaus, C. S. Bretherton, and C. Schär, 2009: The soil moisture–precipitation feedback in simulations with explicit and parameterized convection. J. Climate, 22, 50035020, https://doi.org/10.1175/2009JCLI2604.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac. J. Atmos. Sci., 42, 129151.

  • Huang, H.-Y., and S. A. Margulis, 2013: Impact of soil moisture heterogeneity length scale and gradients on daytime coupled land-cloudy boundary layer interactions. Hydrol. Processes, 27, 19882003, https://doi.org/10.1002/hyp.9351.

    • Search Google Scholar
    • Export Citation
  • Hussain, A. K. M. F., and W. C. Reynolds, 1970: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech., 41, 241258, https://doi.org/10.1017/S0022112070000605.

    • Search Google Scholar
    • Export Citation
  • Immerzeel, W. W., L. P. H. van Beek, and M. F. P. Bierkens, 2010: Climate change will affect the Asian water towers. Science, 328, 13821385, https://doi.org/10.1126/science.1183188.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and D. H. Lenschow, 2014: Temporal evolution of low-level winds induced by two-dimensional mesoscale surface heat-flux heterogeneity. Bound.-Layer Meteor., 151, 501529, https://doi.org/10.1007/s10546-014-9912-8.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and J.-H. Ryu, 2016: Response of moist convection to multi-scale surface flux heterogeneity. Quart. J. Roy. Meteor. Soc., 142, 21802193, https://doi.org/10.1002/qj.2811.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436, https://doi.org/10.1175/JAS3810.1.

    • Search Google Scholar
    • Export Citation
  • King, P. W. S., M. J. Leduc, D. M. L. Sills, N. R. Donaldson, D. R. Hudak, P. Joe, and B. P. Murphy, 2003: Lake breezes in southern Ontario and their relation to tornado climatology. Wea. Forecasting, 18, 795807, https://doi.org/10.1175/1520-0434(2003)018<0795:LBISOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305, 11381140, https://doi.org/10.1126/science.1100217.

    • Search Google Scholar
    • Export Citation
  • Lee, J. M., Y. Zhang, and S. A. Klein, 2019: The effect of land surface heterogeneity and background wind on shallow cumulus clouds and the transition to deeper convection. J. Atmos. Sci., 76, 401419, https://doi.org/10.1175/JAS-D-18-0196.1.

    • Search Google Scholar
    • Export Citation
  • Li, M., Y. Ma, Z. Hu, H. Ishikawa, and Y. Oku, 2009: Snow distribution over the Namco lake area of the Tibetan Plateau. Hydrol. Earth Syst. Sci., 13, 20232030, https://doi.org/10.5194/hess-13-2023-2009.

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Liu, and W. Li, 2012: Numerical simulation of land surface process at different underlying surfaces in Tibetan Plateau. Plateau Meteor., 31, 581591.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and Coauthors, 2020: A long-term (2005–2016) dataset of hourly integrated land–atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data, 12, 29372957, https://doi.org/10.5194/essd-12-2937-2020.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, https://doi.org/10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., and Coauthors, 2013: Technical description of version 4.5 of the Community Land Model (CLM). NCAR Tech. Note NCAR/TN-503+STR, 420 pp.

  • Pal, J. S., and E. A. B. Eltahir, 2001: Pathways relating soil moisture conditions to future summer rainfall within a model of the land–atmosphere system. J. Climate, 14, 12271242, https://doi.org/10.1175/1520-0442(2001)014<1227:PRSMCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., K. R. Haghi, K. T. Halbert, B. Elmer, and J. Wang, 2019: The potential role of atmospheric bores and gravity waves in the initiation and maintenance of nocturnal convection over the Southern Great Plains. J. Atmos. Sci., 76, 4368, https://doi.org/10.1175/JAS-D-17-0172.1.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, https://doi.org/10.1175/JAS3465.1.

    • Search Google Scholar
    • Export Citation
  • Powers, J. G., and Coauthors, 2017: The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Search Google Scholar
    • Export Citation
  • Reif, D. W., and H. B. Bluestein, 2017: A 20-year climatology of nocturnal convection initiation over the central and southern Great Plains during the warm season. Mon. Wea. Rev., 145, 16151639, https://doi.org/10.1175/MWR-D-16-0340.1.

    • Search Google Scholar
    • Export Citation
  • Rieck, M., C. Hohenegger, and C. C. van Heerwaarden, 2014: The influence of land surface heterogeneities on cloud size development. Mon. Wea. Rev., 142, 38303846, https://doi.org/10.1175/MWR-D-13-00354.1.

    • Search Google Scholar
    • Export Citation
  • Rousseau-Rizzi, R., D. J. Kirshbaum, and M. K. Yau, 2017: Initiation of deep convection over an idealized mesoscale convergence line. J. Atmos. Sci., 74, 835853, https://doi.org/10.1175/JAS-D-16-0221.1.

    • Search Google Scholar
    • Export Citation
  • Santanello, J. A., Jr., C. D. Peters-Lidard, A. Kennedy, and S. V. Kumar, 2013: Diagnosing the nature of land–atmosphere coupling: A case study of dry/wet extremes in the U.S. southern Great Plains. J. Hydrometeor., 14, 324, https://doi.org/10.1175/JHM-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Schiro, K. A., and J. D. Neelin, 2019: Deep convective organization, moisture vertical structure, and convective transition using deep-inflow mixing. J. Atmos. Sci., 76, 965987, https://doi.org/10.1175/JAS-D-18-0122.1.

    • Search Google Scholar
    • Export Citation
  • Schmidt, H., and U. Schumann, 1989: Coherent structure of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech., 200, 511562, https://doi.org/10.1017/S0022112089000753.

    • Search Google Scholar
    • Export Citation
  • Shen, L., J. Sun, R. Yuan, and P. Liu, 2016: Characteristics of secondary circulations in the convective boundary layer over two-dimensional heterogeneous surfaces. J. Meteor. Res., 30, 944960, https://doi.org/10.1007/s13351-016-6016-z.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., and J. W. M. Cuijpers, 1995: Evaluation of parametric assumptions for shallow cumulus convection. J. Atmos. Sci., 52, 650666, https://doi.org/10.1175/1520-0469(1995)052<0650:EOPAFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sills, D. M. L., J. R. Brook, I. Levy, P. A. Makar, J. Zhang, and P. A. Taylor, 2011: Lake breezes in the southern Great Lakes region and their influence during BAQS-Met 2007. Atmos. Chem. Phys., 11, 79557973, https://doi.org/10.5194/acp-11-7955-2011.

    • Search Google Scholar
    • Export Citation
  • Subin, Z. M., W. J. Riley, and D. Mironov, 2012: An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. J. Adv. Model. Earth Syst., 4, M02001, https://doi.org/10.1029/2011MS000072.

    • Search Google Scholar
    • Export Citation
  • Sühring, M., B. Maronga, F. Herbort, and S. Raasch, 2014: On the effect of surface heat-flux heterogeneities on the mixed-layer-top entrainment. Bound.-Layer Meteor., 151, 531556, https://doi.org/10.1007/s10546-014-9913-7.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., C.-H. Moeng, B. Stevens, D. H. Lenschow, and S. D. Mayor, 1998: Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci., 55, 30423064, https://doi.org/10.1175/1520-0469(1998)055<3042:SOTEZC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1991: Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses. J. Climate, 4, 707722, https://doi.org/10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Y. Ma, X. Chen, W. Ma, Z. Su, and M. Menenti, 2015: Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau. J. Geophys. Res. Atmos., 120, 12 32712 344, https://doi.org/10.1002/2015JD023863.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Y. Ma, Y. Wang, Lazhu, L. Wang, W. Ma, and B. Su, 2023: Analysis of lake stratification and mixing and its influencing factors over high elevation large and small lakes on the Tibetan Plateau. Water, 15, 2094, https://doi.org/10.3390/w15112094.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., D. J. Kirshbaum, and D. M. L. Sills, 2019: Convection initiation aided by lake-breeze convergence over the Niagara Peninsula. Mon. Wea. Rev., 147, 39553979, https://doi.org/10.1175/MWR-D-19-0123.1.

    • Search Google Scholar
    • Export Citation
  • Yang, K., H. Lu, S. Yue, G. Zhang, Y. Lei, Z. La, and W. Wang, 2018: Quantifying recent precipitation change and predicting lake expansion in the inner Tibetan Plateau. Climatic Change, 147, 149163, https://doi.org/10.1007/s10584-017-2127-5.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, https://doi.org/10.1038/nclimate1580.

    • Search Google Scholar
    • Export Citation
  • Yao, X., K. Yang, X. Zhou, Y. Wang, Lazhu, Y. Chen, and H. Lu, 2021: Surface friction contrast between water body and land enhances precipitation downwind of a large lake in Tibet. Climate Dyn., 56, 21132126, https://doi.org/10.1007/s00382-020-05575-x.

    • Search Google Scholar
    • Export Citation
  • Ye, G., X. Zhang, and H. Yu, 2023: Modifications to three-dimensional turbulence parameterization for tropical cyclone simulation at convection-permitting resolution. J. Adv. Model. Earth Syst., 15, e2022MS003530, https://doi.org/10.1029/2022MS003530.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., T. Yao, H. Xie, K. Zhang, and F. Zhu, 2014: Lakes’ state and abundance across the Tibetan Plateau. Chin. Sci. Bull., 59, 30103021, https://doi.org/10.1007/s11434-014-0258-x.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., W. Luo, W. Chen, and G. Zheng, 2019: A robust but variable lake expansion on the Tibetan Plateau. Sci. Bull., 64, 13061309, https://doi.org/10.1016/j.scib.2019.07.018.

    • Search Google Scholar
    • Export Citation
  • Zhang, G., and Coauthors, 2020: Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Sci. Rev., 208, 103269, https://doi.org/10.1016/j.earscirev.2020.103269.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., W. Lin, A. M. Vogelmann, M. Zhang, S. Xie, Y. Qin, and J.-C. Golaz, 2021: Improving convection trigger functions in deep convective parameterization schemes using machine learning. J. Adv. Model. Earth Syst., 13, e2020MS002365, https://doi.org/10.1029/2020MS002365.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J.-W. Bao, B. Chen, and E. D. Grell, 2018: A three-dimensional scale-adaptive turbulent kinetic energy scheme in the WRF-ARW Model. Mon. Wea. Rev., 146, 20232045, https://doi.org/10.1175/MWR-D-17-0356.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the arm Southern Great Plains site. J. Atmos. Sci., 67, 29432959, https://doi.org/10.1175/2010JAS3366.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Q. Huang, Y. Ma, J. Luo, C. Wang, Z. Li, and Y. Chou, 2021: Large eddy simulation of boundary-layer turbulence over the heterogeneous surface in the source region of the yellow river. Atmos. Chem. Phys., 21, 15 94915 968, https://doi.org/10.5194/acp-21-15949-2021.

    • Search Google Scholar
    • Export Citation
  • Zhou, C., P. Zhao, and J. Chen, 2019: The interdecadal change of summer water vapor over the Tibetan Plateau and associated mechanisms. J. Climate, 32, 41034119, https://doi.org/10.1175/JCLI-D-18-0364.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 482 482 92
Full Text Views 177 177 46
PDF Downloads 235 235 59