Morning Transition of the Coupled Vegetation Canopy and Atmospheric Boundary Layer Turbulence according to the Wind Intensity

Sylvain Dupont aINRAE, Bordeaux Sciences Agro, ISPA, Villenave d’Ornon, France

Search for other papers by Sylvain Dupont in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-1909-4997
,
Mark R. Irvine aINRAE, Bordeaux Sciences Agro, ISPA, Villenave d’Ornon, France

Search for other papers by Mark R. Irvine in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-5764-8375
, and
Caroline Bidot aINRAE, Bordeaux Sciences Agro, ISPA, Villenave d’Ornon, France

Search for other papers by Caroline Bidot in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Turbulence in canopy plays a crucial role in biosphere–atmosphere exchanges. Traditionally, canopy turbulence has been analyzed under stationary conditions based on atmospheric thermal stability, disregarding the time of the day and the atmospheric boundary layer (ABL) depth, although recent studies have suggested that daytime canopy turbulence might be influenced by ABL-scale motions. The morning transition offers an intriguing period when the ABL grows and when an increasing influence of large-scale motions on canopy turbulence might be anticipated. Using large-eddy simulations resolving both canopy and ABL turbulence, we investigate here how the turbulence and exchanges at the canopy top change along the morning transition according to the wind intensity. Under significant wind, simulations show that canopy turbulence and exchanges are dominated by mixing-layer-type motions whose characteristics remain constant during the morning transition even though ABL-scale motions imprint on the canopy’s instantaneous velocity fields as the ABL grows. Under low wind, the canopy turbulence is dominated by plumes, whose horizontal sizes extend with the ABL, while their vertical sizes reach a limit before the morning transition ends. In the early morning, canopy-top exchanges are influenced by sources from both the canopy top and the ABL entrainment zone, explaining some of the dissimilarity in turbulent transport between scalars, apart from the differences in the location of canopy scalar sources. When reaching the residual layer, the ABL grows quicker, with intense water vapor and carbon dioxide exchanges, dominated by large-scale motions penetrating deep within the canopy, releasing into the atmosphere the nocturnal accumulated carbon dioxide.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sylvain Dupont, sylvain.dupont@inrae.fr

Abstract

Turbulence in canopy plays a crucial role in biosphere–atmosphere exchanges. Traditionally, canopy turbulence has been analyzed under stationary conditions based on atmospheric thermal stability, disregarding the time of the day and the atmospheric boundary layer (ABL) depth, although recent studies have suggested that daytime canopy turbulence might be influenced by ABL-scale motions. The morning transition offers an intriguing period when the ABL grows and when an increasing influence of large-scale motions on canopy turbulence might be anticipated. Using large-eddy simulations resolving both canopy and ABL turbulence, we investigate here how the turbulence and exchanges at the canopy top change along the morning transition according to the wind intensity. Under significant wind, simulations show that canopy turbulence and exchanges are dominated by mixing-layer-type motions whose characteristics remain constant during the morning transition even though ABL-scale motions imprint on the canopy’s instantaneous velocity fields as the ABL grows. Under low wind, the canopy turbulence is dominated by plumes, whose horizontal sizes extend with the ABL, while their vertical sizes reach a limit before the morning transition ends. In the early morning, canopy-top exchanges are influenced by sources from both the canopy top and the ABL entrainment zone, explaining some of the dissimilarity in turbulent transport between scalars, apart from the differences in the location of canopy scalar sources. When reaching the residual layer, the ABL grows quicker, with intense water vapor and carbon dioxide exchanges, dominated by large-scale motions penetrating deep within the canopy, releasing into the atmosphere the nocturnal accumulated carbon dioxide.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sylvain Dupont, sylvain.dupont@inrae.fr

Supplementary Materials

    • Supplemental Materials (PDF 1.9384 MB)
Save
  • Albertson, J. D., G. G. Katul, and P. Wiberg, 2001: Relative importance of local and regional controls on coupled water, carbon, and energy fluxes. Adv. Water Resour., 24, 11031118, https://doi.org/10.1016/S0309-1708(01)00042-2.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., 2008: Transitional, entraining, cloudy, and coastal boundary layers. Acta Geophys., 56, 220, https://doi.org/10.2478/s11600-007-0035-1.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., H. K. Baltink, and F. C. Bosveld, 2001: Observations of the morning transition of the convective boundary layer. Bound.-Layer Meteor., 101, 209227, https://doi.org/10.1023/A:1019264716195.

    • Search Google Scholar
    • Export Citation
  • Angevine, W. M., J. M. Edwards, M. Lothon, M. A. LeMone, and S. R. Osborne, 2020: Transition periods in the diurnally-varying atmospheric boundary layer over land. Bound.-Layer Meteor., 177, 205223, https://doi.org/10.1007/s10546-020-00515-y.

    • Search Google Scholar
    • Export Citation
  • Basu, S., J.-F. Vinuesa, and A. Swift, 2008: Dynamic LES modeling of a diurnal cycle. J. Appl. Meteor. Climatol., 47, 11561174, https://doi.org/10.1175/2007JAMC1677.1.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2008: The role of shear in the morning transition boundary layer. Bound.-Layer Meteor., 129, 395410, https://doi.org/10.1007/s10546-008-9324-8.

    • Search Google Scholar
    • Export Citation
  • Blay-Carreras, E., and Coauthors, 2014: Role of the residual layer and large-scale subsidence on the development and evolution of the convective boundary layer. Atmos. Chem. Phys., 14, 45154530, https://doi.org/10.5194/acp-14-4515-2014.

    • Search Google Scholar
    • Export Citation
  • Bohrer, G., G. G. Katul, R. L. Walko, and R. Avissar, 2009: Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Bound.-Layer Meteor., 132, 351382, https://doi.org/10.1007/s10546-009-9404-4.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., 2008: Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320, 14441449, https://doi.org/10.1126/science.1155121.

    • Search Google Scholar
    • Export Citation
  • Bonan, G. B., E. G. Patton, I. N. Harman, K. W. Oleson, J. J. Finnigan, Y. Lu, and E. A. Burakowski, 2018: Modeling canopy-induced turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer (CLM-ml v0). Geosci. Model Dev., 11, 14671496, https://doi.org/10.5194/gmd-11-1467-2018.

    • Search Google Scholar
    • Export Citation
  • Boudreault, L.-É., S. Dupont, A. Bechmann, and E. Dellwik, 2017: How forest inhomogeneities affect the edge flow. Bound.-Layer Meteor., 162, 375400, https://doi.org/10.1007/s10546-016-0202-5.

    • Search Google Scholar
    • Export Citation
  • Braud, I., A. C. Dantas-Antonino, M. Vauclin, J. L. Thony, and P. Ruelle, 1995: A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification. J. Hydrol., 166, 213250, https://doi.org/10.1016/0022-1694(94)05085-C.

    • Search Google Scholar
    • Export Citation
  • Brunet, Y., 2020: Turbulent flow in plant canopies: Historical perspective and overview. Bound.-Layer Meteor., 177, 315364, https://doi.org/10.1007/s10546-020-00560-7.

    • Search Google Scholar
    • Export Citation
  • Byun, D. W., 1990: On the analytical solutions of flux-profile relationships for the atmospheric surface layer. J. Appl. Meteor., 29, 652657, https://doi.org/10.1175/1520-0450(1990)029<0652:OTASOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cava, D., and Coauthors, 2022: Vertical propagation of submeso and coherent structure in a tall and dense Amazon forest in different stability conditions. Part I: Flow structure within and above the roughness sublayer. Agric. For. Meteor., 322, 108983, https://doi.org/10.1016/j.agrformet.2022.108983.

    • Search Google Scholar
    • Export Citation
  • Clifton, O. E., and E. G. Patton, 2021: Does organization in turbulence influence ozone removal by deciduous forests? J. Geophys. Res. Biogeosci., 126, e2021JG006362, https://doi.org/10.1029/2021JG006362.

    • Search Google Scholar
    • Export Citation
  • Clifton, O. E., E. G. Patton, S. Wang, M. Barth, J. Orlando, and R. H. Schwantes, 2022: Large eddy simulation for investigating coupled forest canopy and turbulence influences on atmospheric chemistry. J. Adv. Model. Earth Syst., 14, e2022MS003078, https://doi.org/10.1029/2022MS003078.

    • Search Google Scholar
    • Export Citation
  • Domec, J.-C., and Coauthors, 2012: Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations. Tree Physiol., 32, 707723, https://doi.org/10.1093/treephys/tps018.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2008a: Edge flow and canopy structure: A large-eddy simulation study. Bound.-Layer Meteor., 126, 5171, https://doi.org/10.1007/s10546-007-9216-3.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2008b: Impact of forest edge shape on tree stability: A large-eddy simulation study. Forestry, 81, 299315, https://doi.org/10.1093/forestry/cpn006.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and Y. Brunet, 2008c: Influence of foliar density profile on canopy flow: A large-eddy simulation study. Agric. For. Meteor., 148, 976990, https://doi.org/10.1016/j.agrformet.2008.01.014.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and E. G. Patton, 2012a: Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experiment. Agric. For. Meteor., 157, 1129, https://doi.org/10.1016/j.agrformet.2012.01.011.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and E. G. Patton, 2012b: Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: The CHATS experiment. Atmos. Chem. Phys., 12, 59135935, https://doi.org/10.5194/acp-12-5913-2012.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., and E. G. Patton, 2022: On the influence of large-scale atmospheric motions on near-surface turbulence: Comparison between flows over low-roughness and tall vegetation canopies. Bound.-Layer Meteor., 184, 195230, https://doi.org/10.1007/s10546-022-00710-z.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., Y. Brunet, and J. J. Finnigan, 2008: Large-eddy simulation of turbulent flow over a forested hill: Validation and coherent structure identification. Quart. J. Roy. Meteor. Soc., 134, 19111929, https://doi.org/10.1002/qj.328.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., J.-M. Bonnefond, M. R. Irvine, E. Lamaud, and Y. Brunet, 2011: Long-distance edge effects in a pine forest with a deep and sparse trunk space: In situ and numerical experiments. Agric. For. Meteor., 151, 328344, https://doi.org/10.1016/j.agrformet.2010.11.007.

    • Search Google Scholar
    • Export Citation
  • Dupont, S., M. R. Irvine, N. Motisi, C. Allinne, J. Avelino, and L. B. Beilhe, 2022: Wind-flow dynamics and spore-like particle dispersal over agroforestry systems: Impact of the tree density distribution. Agric. For. Meteor., 327, 109214, https://doi.org/10.1016/j.agrformet.2022.109214.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J., 2000: Turbulence in plant canopies. Annu. Rev. Fluid Mech., 32, 519571, https://doi.org/10.1146/annurev.fluid.32.1.519.

    • Search Google Scholar
    • Export Citation
  • Finnigan, J. J., R. H. Shaw, and E. G. Patton, 2009: Turbulence structure above a vegetation canopy. J. Fluid Mech., 637, 387424, https://doi.org/10.1017/S0022112009990589.

    • Search Google Scholar
    • Export Citation
  • Foken, T., and B. Wichura, 1996: Tools for quality assessment of surface-based flux measurements. Agric. For. Meteor., 78, 83105, https://doi.org/10.1016/0168-1923(95)02248-1.

    • Search Google Scholar
    • Export Citation
  • Grace, J., Y. Malhi, J. Lloyd, J. McIntyre, A. C. Miranda, P. Meir, and H. S. Miranda, 1996: The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Global Change Biol., 2, 209217, https://doi.org/10.1111/j.1365-2486.1996.tb00073.x.

    • Search Google Scholar
    • Export Citation
  • Halios, C. H., and J. F. Barlow, 2018: Observations of the morning development of the urban boundary layer over London, UK, taken during the ACTUAL project. Bound.-Layer Meteor., 166, 395422, https://doi.org/10.1007/s10546-017-0300-z.

    • Search Google Scholar
    • Export Citation
  • Han, B., S. , and Y. Ao, 2012: Development of the convective boundary layer capping with a thick neutral layer in Badanjilin: Observations and simulations. Adv. Atmos. Sci., 29, 177192, https://doi.org/10.1007/s00376-011-0207-4.

    • Search Google Scholar
    • Export Citation
  • Horst, T., 2019: NCAR/EOL ISFS CHATS high rate tower and array data, version 2.0. UCAR/NCAR–Earth Observing Laboratory, accessed 10 February 2021, https://doi.org/10.26023/P4JW-9T0T-QG0S.

  • Juang, J.-Y., G. G. Katul, M. B. S. Siqueira, P. C. Stoy, S. Palmroth, H. R. McCarthy, H.-S. Kim, and R. Oren, 2006: Modeling nighttime ecosystem respiration from measured CO2 concentration and air temperature profiles using inverse methods. J. Geophys. Res., 111, D08S05, https://doi.org/10.1029/2005JD005976.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., and R. B. Wilhelmson, 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, https://doi.org/10.1175/1520-0469(1978)035%3C1070:TSOTDC%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knapp, A. K., 1993: Gas exchange dynamics in C^3 and C^4 grasses: Consequence of differences in stomatal conductance. Ecology, 74, 113123, https://doi.org/10.2307/1939506.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., J. Kleissl, C. Meneveau, and M. B. Parlange, 2006: Large-eddy simulation of a diurnal cycle of the atmospheric boundary layer: Atmospheric stability and scaling issues. Water Resour. Res., 42, W06D09, https://doi.org/10.1029/2005WR004651.

    • Search Google Scholar
    • Export Citation
  • Lapworth, A., 2006: The morning transition of the nocturnal boundary layer. Bound.-Layer Meteor., 119, 501526, https://doi.org/10.1007/s10546-005-9046-0.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., 1973: The structure and dynamics of horizontal roll vortices in the planetary boundary layer. J. Atmos. Sci., 30, 10771091, https://doi.org/10.1175/1520-0469(1973)030<1077:TSADOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2002: Cases-97: Late-morning warming and moistening of the convective boundary layer over the walnut river watershed. Bound.-Layer Meteor., 104 (1), 152, https://doi.org/10.1023/A:1015569104180.

    • Search Google Scholar
    • Export Citation
  • Leuning, R., F. M. Kelliher, D. G. G. De Pury, and E.-D. Schulze, 1995: Leaf nitrogen, photosynthesis, conductance and transpiration: Scaling from leaves to canopies. Plant Cell Environ., 18, 11831200, https://doi.org/10.1111/j.1365-3040.1995.tb00628.x.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., and H. Liu, 2019: An advanced multiple-layer canopy model in the WRF model with large-eddy simulations to simulate canopy flows and scalar transport under different stability conditions. J. Adv. Model. Earth Syst., 11, 23302351, https://doi.org/10.1029/2018MS001347.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, https://doi.org/10.1023/A:1001765727956.

  • Moene, A. F., B. I. Michels, and A. A. M. Holtslag, 2006: Scaling variances of scalars in a convective boundary layer under different entrainment regimes. Bound.-Layer Meteor., 120, 257274, https://doi.org/10.1007/s10546-006-9053-9.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., and P. P. Sullivan, 1994: A comparison of shear- and buoyancy-driven planetary boundary layer flows. J. Atmos. Sci., 51, 9991022, https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monson, R., and D. Baldocchi, 2014: Terrestrial Biosphere-Atmosphere Fluxes. Cambridge University Press, 488 pp.

  • Nikolov, N. T., W. J. Massman, and A. W. Schoettle, 1995: Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants. Ecol. Modell., 80, 205235, https://doi.org/10.1016/0304-3800(94)00072-P.

    • Search Google Scholar
    • Export Citation
  • Ogée, J., Y. Brunet, D. Loustau, P. Berbigier, and S. Delzon, 2003: MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: Evaluation from hourly to yearly time scales and sensitivity analysis. Global Change Biol., 9, 697717, https://doi.org/10.1046/j.1365-2486.2003.00628.x.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., and Coauthors, 2011: The canopy horizontal array turbulence study. Bull. Amer. Meteor. Soc., 92, 593611, https://doi.org/10.1175/2010BAMS2614.1.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, R. H. Shaw, J. J. Finnigan, and J. C. Weil, 2016: Atmospheric stability influences on coupled boundary layer and canopy turbulence. J. Atmos. Sci., 73, 16211647, https://doi.org/10.1175/JAS-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Paw U, K. T., 1987: Mathematical analysis of the operative temperature and energy budget. J. Therm. Biol., 12, 227233, https://doi.org/10.1016/0306-4565(87)90009-X.

    • Search Google Scholar
    • Export Citation
  • Pedruzo-Bagazgoitia, X., and Coauthors, 2023: Investigating the diurnal radiative, turbulent, and biophysical processes in the Amazonian canopy-atmosphere interface by combining LES simulations and observations. J. Adv. Model. Earth Syst., 15, e2022MS003210, https://doi.org/10.1029/2022MS003210.

    • Search Google Scholar
    • Export Citation
  • Perret, L., and E. G. Patton, 2021: Stability influences on interscale transport of turbulent kinetic energy and Reynolds shear stress in atmospheric boundary layers interacting with a tall vegetation canopy. J. Fluid Mech., 921, A14, https://doi.org/10.1017/jfm.2021.453.

    • Search Google Scholar
    • Export Citation
  • Pino, D., J. Vilà-Guerau de Arellano, and P. G. Duynkerke, 2003: The contribution of shear to the evolution of a convective boundary layer. J. Atmos. Sci., 60, 19131926, https://doi.org/10.1175/1520-0469(2003)060<1913:TCOSTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Potier, E., and Coauthors, 2015: Multilayer modelling of ozone fluxes on winter wheat reveals large deposition on wet senescing leaves. Agric. For. Meteor., 211–212, 5871, https://doi.org/10.1016/j.agrformet.2015.05.006.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., and A. S. Thom, 1981: Turbulence in and above plant canopies. Annu. Rev. Fluid Mech., 13, 97129, https://doi.org/10.1146/annurev.fl.13.010181.000525.

    • Search Google Scholar
    • Export Citation
  • Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound.-Layer Meteor., 78, 351382, https://doi.org/10.1007/BF00120941.

    • Search Google Scholar
    • Export Citation
  • Saito, K., J.-i. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda, 2007: Nonhydrostatic atmospheric models and operational development at JMA. J. Meteor. Soc. Japan, 85B, 271304, https://doi.org/10.2151/jmsj.85B.271.

    • Search Google Scholar
    • Export Citation
  • Salesky, S. T., and W. Anderson, 2018: Buoyancy effects on large-scale motions in convective atmospheric boundary layers: Implications for modulation of near-wall processes. J. Fluid Mech., 856, 135168, https://doi.org/10.1017/jfm.2018.711.

    • Search Google Scholar
    • Export Citation
  • Salesky, S. T., M. Chamecki, and E. Bou-Zeid, 2017: On the nature of the transition between roll and cellular organization in the convective boundary layer. Bound.-Layer Meteor., 163, 4168, https://doi.org/10.1007/s10546-016-0220-3.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., S. Liu, J. H. Schween, and S. Crewell, 2013: Large-eddy atmosphere–land-surface modelling over heterogeneous surfaces: Model development and comparison with measurements. Bound.-Layer Meteor., 148, 333356, https://doi.org/10.1007/s10546-013-9823-0.

    • Search Google Scholar
    • Export Citation
  • Shaw, R. H., and U. Schumann, 1992: Large-eddy simulation of turbulent flow above and within a forest. Bound.-Layer Meteor., 61, 4764, https://doi.org/10.1007/BF02033994.

    • Search Google Scholar
    • Export Citation
  • Sinoquet, H., and R. Bonhomme, 1992: Modeling radiative transfer in mixed and row intercropping systems. Agric. For. Meteor., 62, 219240, https://doi.org/10.1016/0168-1923(92)90016-W.

    • Search Google Scholar
    • Export Citation
  • Sinoquet, H., X. L. Roux, B. Adam, T. Ameglio, and F. A. Daudet, 2001: RATP: A model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: Application to an isolated tree crown. Plant Cell Environ., 24, 395406, https://doi.org/10.1046/j.1365-3040.2001.00694.x.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1997: Decay of convective turbulence revisited. Bound.-Layer Meteor., 82, 503517, https://doi.org/10.1023/A:1000231524314.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 2007: A numerical study of daily transitions in the convective boundary layer. Bound.-Layer Meteor., 123, 365383, https://doi.org/10.1007/s10546-006-9147-4.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 666 pp.

  • Sykes, R. I., and D. S. Henn, 1989: Large-eddy simulation of turbulent sheared convection. J. Atmos. Sci., 46, 11061118, https://doi.org/10.1175/1520-0469(1989)046<1106:LESOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Hooft, J. A., P. Baas, M. van Tiggelen, C. Ansorge, and B. J. H. van de Wiel, 2019: An idealized description for the diurnal cycle of the dry atmospheric boundary layer. J. Atmos. Sci., 76, 37173736, https://doi.org/10.1175/JAS-D-19-0023.1.

    • Search Google Scholar
    • Export Citation
  • Van Ulden, A. P., and J. Wieringa, 1996: Atmospheric boundary layer research at Cabauw. Bound.-Layer Meteor., 78, 3969, https://doi.org/10.1007/BF00122486.

    • Search Google Scholar
    • Export Citation
  • Vilà-Guerau de Arellano, J., B. Gioli, F. Miglietta, H. J. J. Jonker, H. K. Baltink, R. W. A. Hutjes, and A. A. M. Holtslag, 2004: Entrainment process of carbon dioxide in the atmospheric boundary layer. J. Geophys. Res., 109, D18110, https://doi.org/10.1029/2004JD004725.

    • Search Google Scholar
    • Export Citation
  • Whitehead, D., and R. O. Teskey, 1995: Dynamic response of stomata to changing irradiance in loblolly pine (Pinus taeda L.). Tree Physiol., 15, 245251, https://doi.org/10.1093/treephys/15.4.245.

    • Search Google Scholar
    • Export Citation
  • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193, https://doi.org/10.1007/s007030070003.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS) – A multi-scale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, https://doi.org/10.1007/s007030170027.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2654 2461 21
Full Text Views 660 638 483
PDF Downloads 231 206 58