Recovering Quasi-Biennial Oscillations from Chaos

Xavier Chartrand aInstitut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada

Search for other papers by Xavier Chartrand in
Current site
Google Scholar
PubMed
Close
,
Louis-Philippe Nadeau aInstitut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada

Search for other papers by Louis-Philippe Nadeau in
Current site
Google Scholar
PubMed
Close
, and
Antoine Venaille bUniv Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

Search for other papers by Antoine Venaille in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The quasi-biennial oscillation (QBO) is understood to result from wave–mean-flow interactions, but the reasons for its relative stability remain a subject of ongoing debate. In addition, consensus has yet to be reached regarding the respective roles of different equatorial wave types in shaping the QBO’s characteristics. Here, we employ Holton–Lindzen–Plumb’s quasilinear model to shed light on the robustness of periodic behavior in the presence of multiple wave forcings. A comprehensive examination of the various dynamical regimes in this model reveals that increased vertical wave propagation at higher altitudes favors periodicity. In the case of single standing wave forcing, enhanced vertical propagation is controlled by the wave attenuation length scale. The occurrence of nonperiodic states at high forcing amplitudes is explained by the excitation of high vertical unstable modes. Increasing the attenuation length scale prevents the emergence of such modes. When multiple wave forcing is considered, the mean flow generated by a dominant primary wave facilitates greater vertical propagation of a perturbation wave. Raising the altitude where most of the wave damping occurs favors periodicity by preventing the development of secondary jets responsible for the aperiodic behavior. This mechanism underscores the potential role of internal gravity waves in supporting the periodicity of a QBO primarily driven by planetary waves.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xavier Chartrand, xavier.chartrand@uqar.ca

Abstract

The quasi-biennial oscillation (QBO) is understood to result from wave–mean-flow interactions, but the reasons for its relative stability remain a subject of ongoing debate. In addition, consensus has yet to be reached regarding the respective roles of different equatorial wave types in shaping the QBO’s characteristics. Here, we employ Holton–Lindzen–Plumb’s quasilinear model to shed light on the robustness of periodic behavior in the presence of multiple wave forcings. A comprehensive examination of the various dynamical regimes in this model reveals that increased vertical wave propagation at higher altitudes favors periodicity. In the case of single standing wave forcing, enhanced vertical propagation is controlled by the wave attenuation length scale. The occurrence of nonperiodic states at high forcing amplitudes is explained by the excitation of high vertical unstable modes. Increasing the attenuation length scale prevents the emergence of such modes. When multiple wave forcing is considered, the mean flow generated by a dominant primary wave facilitates greater vertical propagation of a perturbation wave. Raising the altitude where most of the wave damping occurs favors periodicity by preventing the development of secondary jets responsible for the aperiodic behavior. This mechanism underscores the potential role of internal gravity waves in supporting the periodicity of a QBO primarily driven by planetary waves.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Xavier Chartrand, xavier.chartrand@uqar.ca

Supplementary Materials

    • Supplemental Materials (ZIP 9.8411 MB)
Save
  • Achatz, U., Y. H. Kim, and G. S. Voelker, 2023: Multi-scale dynamics of the interaction between waves and mean flows: From nonlinear WKB theory to gravity-wave parameterizations in weather and climate models. arXiv, 2310.07334v1, https://doi.org/10.48550/arXiv.2310.07334.

  • Anstey, J. A., and Coauthors, 2022: Impacts, processes and projections of the quasi-biennial oscillation. Nat. Rev. Earth Environ., 3, 588603, https://doi.org/10.1038/s43017-022-00323-7.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and Coauthors, 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179229, https://doi.org/10.1029/1999RG000073.

    • Search Google Scholar
    • Export Citation
  • Bardet, D., A. Spiga, and S. Guerlet, 2022: Joint evolution of equatorial oscillation and interhemispheric circulation in Saturn’s stratosphere. Nat. Astron., 6, 804811, https://doi.org/10.1038/s41550-022-01670-7.

    • Search Google Scholar
    • Export Citation
  • Couston, L. A., D. Lecoanet, B. Favier, and M. Le Bars, 2018: Order out of chaos: Slowly reversing mean flows emerge from turbulently generated internal waves. Phys. Rev. Lett., 120, 244505, https://doi.org/10.1103/PhysRevLett.120.244505.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., 1981: Wave transience in a compressible atmosphere. Part I: Transient internal wave, mean-flow interaction. J. Atmos. Sci., 38, 281297, https://doi.org/10.1175/1520-0469(1981)038<0281:WTIACA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunkerton, T. J., and D. P. Delisi, 1997: Interaction of the quasi-biennial oscillation and stratopause semiannual oscillation. J. Geophys. Res., 102, 26 10726 116, https://doi.org/10.1029/96JD03678.

    • Search Google Scholar
    • Export Citation
  • Fletcher, L. N., and Coauthors, 2017: Disruption of Saturn’s quasi-periodic equatorial oscillation by the great northern storm. Nat. Astron., 1, 765770, https://doi.org/10.1038/s41550-017-0271-5.

    • Search Google Scholar
    • Export Citation
  • Giorgetta, M. A., E. Manzini, E. Roeckner, M. Esch, and L. Bengtsson, 2006: Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model. J. Climate, 19, 38823901, https://doi.org/10.1175/JCLI3830.1.

    • Search Google Scholar
    • Export Citation
  • Haynes, P., 2005: Stratospheric dynamics. Annu. Rev. Fluid Mech., 37, 263293, https://doi.org/10.1146/annurev.fluid.37.061903.175710.

    • Search Google Scholar
    • Export Citation
  • Holt, L. A., and Coauthors, 2022: An evaluation of tropical waves and wave forcing of the QBO in the QBOi models. Quart. J. Roy. Meteor. Soc., 148, 15411567, https://doi.org/10.1002/qj.3827.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 10761080, https://doi.org/10.1175/1520-0469(1972)029<1076:AUTFTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, E., and K. B. MacGregor, 2001: Gravity wave-driven flows in the solar tachocline. Astrophys. J., 556, L117L120, https://doi.org/10.1086/322973.

    • Search Google Scholar
    • Export Citation
  • Kim, Y. H., G. S. Voelker, G. Bölöni, G. Zängl, and U. Achatz, 2023: Crucial role of obliquely propagating gravity waves in tropical stratospheric circulation. arXiv, 2309.15301v2, https://doi.org/10.48550/arXiv.2309.15301.

  • Léard, P., D. Lecoanet, and M. Le Bars, 2020: Multimodal excitation to model the quasi-biennial oscillation. Phys. Rev. Lett., 125, 234501, https:doi.org/10.1103/PhysRevLett.125.234501.

    • Search Google Scholar
    • Export Citation
  • Lott, F. G., and L. Guez, 2013: A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere. J. Geophys. Res. Atmos., 118, 88978909, https://doi.org/10.1002/jgrd.50705.

    • Search Google Scholar
    • Export Citation
  • Match, A., and S. Fueglistaler, 2019: The buffer zone of the quasi-biennial oscillation. J. Atmos. Sci., 76, 35533567, https://doi.org/10.1175/JAS-D-19-0151.1.

    • Search Google Scholar
    • Export Citation
  • Match, A., and S. Fueglistaler, 2021: Large internal variability dominates over global warming signal in observed lower stratospheric QBO amplitude. J. Climate, 34, 98239836, https://doi.org/10.1175/JCLI-D-21-0270.1.

    • Search Google Scholar
    • Export Citation
  • Newman, P. A., L. Coy, S. Pawson, and L. R. Lait, 2016: The anomalous change in the QBO in 2015–2016. Geophys. Res. Lett., 43, 87918797, https://doi.org/10.1002/2016GL070373.

    • Search Google Scholar
    • Export Citation
  • Osprey, S. M., N. Butchart, J. R. Knight, A. A. Scaife, K. Hamilton, J. A. Anstey, V. Schenzinger, and C. Zhang, 2016: An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353, 14241427, https://doi.org/10.1126/science.aah4156.

    • Search Google Scholar
    • Export Citation
  • Pahlavan, H. A., J. M. Wallace, Q. Fu, and G. N. Kiladis, 2021: Revisiting the quasi-biennial oscillation as seen in ERA5. Part II: Evaluation of waves and wave forcing. J. Atmos. Sci., 78, 693707, https://doi.org/10.1175/JAS-D-20-0249.1.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., 1977: The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci., 34, 18471858, https://doi.org/10.1175/1520-0469(1977)034<1847:TIOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Plumb, R. A., and R. C. Bell, 1982: A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108, 335352, https://doi.org/10.1002/qj.49710845604.

    • Search Google Scholar
    • Export Citation
  • Rajendran, K., I. M. Moroz, P. L. Read, and S. M. Osprey, 2016: Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate. Quart. J. Roy. Meteor. Soc., 142, 11111120, https://doi.org/10.1002/qj.2714.

    • Search Google Scholar
    • Export Citation
  • Read, P. L., and A. A. Castrejón-Pita, 2012: Phase synchronization between stratospheric and tropospheric quasi-biennial and semi-annual oscillations. Quart. J. Roy. Meteor. Soc., 138, 13381349, https://doi.org/10.1002/qj.1872.

    • Search Google Scholar
    • Export Citation
  • Renaud, A., and A. Venaille, 2020: On the Holton–Lindzen–Plumb model for mean flow reversals in stratified fluids. Quart. J. Roy. Meteor. Soc., 146, 29812997, https://doi.org/10.1002/qj.3821.

    • Search Google Scholar
    • Export Citation
  • Renaud, A., L. P. Nadeau, and A. Venaille, 2019: Periodicity disruption of a model quasi-biennial oscillation of equatorial winds. Phys. Rev. Lett., 122, 214504, https://doi.org/10.1103/PhysRevLett.122.214504.

    • Search Google Scholar
    • Export Citation
  • Saravanan, R., 1990: A multiwave model of the quasi-biennial oscillation. J. Atmos. Sci., 47, 24652474, https://doi.org/10.1175/1520-0469(1990)047<2465:AMMOTQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Semin, B., N. Garroum, F. Pétrélis, and S. Fauve, 2018: Nonlinear saturation of the large scale flow in a laboratory model of the quasi-biennial oscillation. Phys. Rev. Lett., 121, 134502, https://doi.org/10.1103/PhysRevLett.121.134502.

    • Search Google Scholar
    • Export Citation
  • Showman, A. P., X. Tan, and X. Zhang, 2019: Atmospheric circulation of brown dwarfs and Jupiter-and Saturn-like planets: Zonal jets, long-term variability, and QBO-type oscillations. Astrophys. J., 883, 4, https://doi.org/10.3847/1538-4357/ab384a.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2017: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, 946 pp.

  • Wedi, N. P., and P. K. Smolarkiewicz, 2006: Direct numerical simulation of the Plumb–McEwan laboratory analog of the QBO. J. Atmos. Sci., 63, 32263252, https://doi.org/10.1175/JAS3815.1.

    • Search Google Scholar
    • Export Citation
  • Yoden, S., and J. R. Holton, 1988: A new look at equatorial quasi-biennial oscillation models. J. Atmos. Sci., 45, 27032717, https://doi.org/10.1175/1520-0469(1988)045<2703:ANLAEQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2354 2019 103
Full Text Views 961 885 2
PDF Downloads 255 167 0