A Diagnostic Analysis of the Mechanisms for Arctic Cyclone Intensity Evolution

Zhuo Wang aUniversity of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Zhuo Wang in
Current site
Google Scholar
PubMed
Close
,
Mingshi Yang aUniversity of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Mingshi Yang in
Current site
Google Scholar
PubMed
Close
,
John E. Walsh bUniversity of Alaska Fairbanks, Fairbanks, Alaska

Search for other papers by John E. Walsh in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber aUniversity of Illinois Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
, and
Melinda Peng cUniversity of Colorado Colorado Springs, Colorado Springs, Colorado

Search for other papers by Melinda Peng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The intensity evolution of Arctic cyclones (ACs) is examined via cyclone parameter space and composite analyses based on approximately 18 000 AC tracks during 1979–2021. Cyclone parameter spaces are defined by various parameters representing the cyclone structure and physical processes relevant to cyclone development. It is shown that intensifying ACs are associated with diabatic heating and characterized by a cold core in both the lower and upper troposphere, as well as a thermally asymmetric and vertically tilted structure. In contrast, the decay phase is associated with diabatic cooling and characterized by a vertically aligned cyclone with reduced horizontal asymmetry. The cyclone parameter space analysis also indicates a warm core in the lower troposphere for a subset of ACs, which may reflect a frontal occlusion. The transition from AC intensification to decay, on average, is marked by a sharp decrease in both upward motion and diabatic heating, along with the vertical alignment of the cyclone structure. Following this transition, an upright cyclone may persist for a long time due to the weak background vertical wind shear, diabatic cooling, and weak Rossby wave energy dispersion. The evolution of ACs can thus be regarded as a two-stage process: a baroclinic development stage aided by diabatic heating, during which the AC evolution may conform with the Norwegian model for midlatitude cyclones, and a slow decay stage of an equivalent barotropic cyclone, which may leave a remnant tropopause polar vortex after the erosion of the surface circulation.

Significance Statement

Arctic cyclones are the primary weather system in the Arctic and are also an important component in the Arctic climate system owing to their role in modulating Arctic sea ice variability and poleward moisture and energy transport. We examined the cyclone structural characteristics and physical processes associated with the Arctic cyclone intensity evolution and proposed a two-stage conceptual model. A better understanding of the Arctic cyclone intensity change mechanisms will help us better anticipate the changes in Arctic cyclone activity in a warmer climate.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Abstract

The intensity evolution of Arctic cyclones (ACs) is examined via cyclone parameter space and composite analyses based on approximately 18 000 AC tracks during 1979–2021. Cyclone parameter spaces are defined by various parameters representing the cyclone structure and physical processes relevant to cyclone development. It is shown that intensifying ACs are associated with diabatic heating and characterized by a cold core in both the lower and upper troposphere, as well as a thermally asymmetric and vertically tilted structure. In contrast, the decay phase is associated with diabatic cooling and characterized by a vertically aligned cyclone with reduced horizontal asymmetry. The cyclone parameter space analysis also indicates a warm core in the lower troposphere for a subset of ACs, which may reflect a frontal occlusion. The transition from AC intensification to decay, on average, is marked by a sharp decrease in both upward motion and diabatic heating, along with the vertical alignment of the cyclone structure. Following this transition, an upright cyclone may persist for a long time due to the weak background vertical wind shear, diabatic cooling, and weak Rossby wave energy dispersion. The evolution of ACs can thus be regarded as a two-stage process: a baroclinic development stage aided by diabatic heating, during which the AC evolution may conform with the Norwegian model for midlatitude cyclones, and a slow decay stage of an equivalent barotropic cyclone, which may leave a remnant tropopause polar vortex after the erosion of the surface circulation.

Significance Statement

Arctic cyclones are the primary weather system in the Arctic and are also an important component in the Arctic climate system owing to their role in modulating Arctic sea ice variability and poleward moisture and energy transport. We examined the cyclone structural characteristics and physical processes associated with the Arctic cyclone intensity evolution and proposed a two-stage conceptual model. A better understanding of the Arctic cyclone intensity change mechanisms will help us better anticipate the changes in Arctic cyclone activity in a warmer climate.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhuo Wang, zhuowang@illinois.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.2983 MB)
Save
  • Aizawa, T., and H. L. Tanaka, 2016: Axisymmetric structure of the long lasting summer Arctic cyclones. Polar Sci., 10, 192198, https://doi.org/10.1016/j.polar.2016.02.002.

    • Search Google Scholar
    • Export Citation
  • Bell, G. D., and L. F. Bosart, 1989: A 15-year climatology of Northern Hemisphere 500 mb closed cyclone and anticyclone centers. Mon. Wea. Rev., 117, 21422164, https://doi.org/10.1175/1520-0493(1989)117<2142:AYCONH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Besson, P., L. J. Fischer, S. Schemm, and M. Sprenger, 2021: A global analysis of the dry-dynamic forcing during cyclone growth and propagation. Wea. Climate Dyn., 2, 9911009, https://doi.org/10.5194/wcd-2-991-2021.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., M. E. Hardman, T. W. Harrold, and C. W. Pardoe, 1973: The structure of rainbands within a mid-latitude depression. Quart. J. Roy. Meteor. Soc., 99, 215231, https://doi.org/10.1002/qj.49709942002.

    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509, https://doi.org/10.1175/1520-0493(1980)108<1498:ATMCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2010: Composite structure of tropopause polar cyclones. Mon. Wea. Rev., 138, 38403857, https://doi.org/10.1175/2010MWR3371.1.

    • Search Google Scholar
    • Export Citation
  • Cavallo, S. M., and G. J. Hakim, 2013: Physical mechanisms of tropopause polar vortex intensity change. J. Atmos. Sci., 70, 33593373, https://doi.org/10.1175/JAS-D-13-088.1.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 136162, https://doi.org/10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clancy, R., C. M. Bitz, E. Blanchard-Wrigglesworth, M. C. McGraw, and S. M. Cavallo, 2022: A cyclone-centered perspective on the drivers of asymmetric patterns in the atmosphere and sea ice during Arctic cyclones. J. Climate, 35, 7389, https://doi.org/10.1175/JCLI-D-21-0093.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., and M. C. Serreze, 2016: Does the summer Arctic frontal zone influence Arctic Ocean cyclone activity? J. Climate, 29, 49774993, https://doi.org/10.1175/JCLI-D-15-0755.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., D. Barber, D. Dahl-Jensen, J. C. Stroeve, M. C. Serreze, and N. Sommer, 2020: Northern Hemisphere extratropical cyclone tracks. CanWIN, accessed 15 March 2022, https://lwbin-dev.ad.umanitoba.ca/data/dataset/nsidc-extratropical-cyclone-tracking-cnect.

  • Crawford, A. D., E. A. P. Schreiber, N. Sommer, M. C. Serreze, J. C. Stroeve, and D. G. Barber, 2021: Sensitivity of Northern Hemisphere cyclone detection and tracking results to fine spatial and temporal resolution using ERA5. Mon. Wea. Rev., 149, 25812598, https://doi.org/10.1175/MWR-D-20-0417.1.

    • Search Google Scholar
    • Export Citation
  • Crawford, A. D., J. V. Lukovich, M. R. McCrystall, J. C. Stroeve, and D. G. Barber, 2022: Reduced sea ice enhances intensification of winter storms over the Arctic Ocean. J. Climate, 35, 33533370, https://doi.org/10.1175/JCLI-D-21-0747.1.

    • Search Google Scholar
    • Export Citation
  • Croad, H. L., J. Methven, B. Harvey, S. P. E. Keeley, and A. Volonté, 2023: The role of boundary layer processes in summer-time Arctic cyclones. Wea. Climate Dyn., 4, 617638, https://doi.org/10.5194/wcd-4-617-2023.

    • Search Google Scholar
    • Export Citation
  • Dacre, H. F., and S. L. Gray, 2013: Quantifying the climatological relationship between extratropical cyclone intensity and atmospheric precursors. Geophys. Res. Lett., 40, 23222327, https://doi.org/10.1002/grl.50105.

    • Search Google Scholar
    • Export Citation
  • Dai, A., and J. Wang, 1999: Diurnal and semidiurnal tides in global surface pressure fields. J. Atmos. Sci., 56, 38743891, https://doi.org/10.1175/1520-0469(1999)056<3874:DASTIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Mon. Wea. Rev., 119, 19291953, https://doi.org/10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Day, J. J., and K. I. Hodges, 2018: Growing land-sea temperature contrast and the intensification of Arctic cyclones. Geophys. Res. Lett., 45, 36733681, https://doi.org/10.1029/2018GL077587.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352, https://doi.org/10.3402/tellusa.v1i3.8507.

  • Fearon, M. G., J. D. Doyle, D. R. Ryglicki, P. M. Finocchio, and M. Sprenger, 2021: The role of cyclones in moisture transport into the Arctic. Geophys. Res. Lett., 48, e2020GL090353, https://doi.org/10.1029/2020GL090353.

    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., J. D. Doyle, and D. P. Stern, 2022: Accelerated sea ice loss from late summer cyclones in the new Arctic. J. Climate, 35, 77517769, https://doi.org/10.1175/JCLI-D-22-0315.1.

    • Search Google Scholar
    • Export Citation
  • Graham, R. M., S. R. Hudson, and M. Maturilli, 2019: Improved performance of ERA5 in Arctic gateway relative to four global atmospheric reanalyses. Geophys. Res. Lett., 46, 61386147, https://doi.org/10.1029/2019GL082781.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., K. I. Hodges, J. L. Vautrey, and J. Methven, 2021: The role of tropopause polar vortices in the intensification of summer Arctic cyclones. Wea. Climate Dyn., 2, 13031324, https://doi.org/10.5194/wcd-2-1303-2021.

    • Search Google Scholar
    • Export Citation
  • Gu, X., Y. Yang, H. Wang, and C. Liu, 2022: The role of boundary layer processes in summer-time Arctic cyclones. Weather Clim. Dynam., 4, 617638, https://doi.org/10.5194/wcd-4-617-2023.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and I. N. James, 2014: Fluid Dynamics of the Mid-Latitude Atmosphere. Wiley-Blackwell, 432 pp.

  • Johnson, A., and X. Wang, 2021: Observation impact study of an Arctic cyclone associated with a Tropopause Polar Vortex (TPV)-induced Rossby wave initiation event. Mon. Wea. Rev., 149, 15771591, https://doi.org/10.1175/MWR-D-20-0285.1.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., M. A. Shapiro, and E. G. Donall, 1991: The interaction between baroclinic and diabatic processes in a numerical simulation of a rapidly intensifying extratropical marine cyclone. Mon. Wea. Rev., 119, 368384, https://doi.org/10.1175/1520-0493(1991)119<0368:TIBBAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeDrew, E. F., 1984: The role of local heat sources in synoptic activity within the polar basin. Atmos.–Ocean, 22, 309327, https://doi.org/10.1080/07055900.1984.9649201.

    • Search Google Scholar
    • Export Citation
  • Ledrew, E. F., 1988: Development processes for five depression systems within the Polar Basin. J. Climatol., 8, 125153, https://doi.org/10.1002/joc.3370080203.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., 1967: Thermally driven diurnal tide in the atmosphere. Quart. J. Roy. Meteor. Soc., 93, 1842, https://doi.org/10.1002/qj.49709339503.

    • Search Google Scholar
    • Export Citation
  • Lukovich, J. V., J. C. Stroeve, A. Crawford, L. Hamilton, M. Tsamados, H. Heorton, and F. Massonnet, 2021: Summer extreme cyclone impacts on Arctic sea ice. J. Climate, 34, 48174834, https://doi.org/10.1175/JCLI-D-19-0925.1.

    • Search Google Scholar
    • Export Citation
  • Madonna, E., H. Wernli, H. Joos, and O. Martius, 2014: Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Climate, 27, 326, https://doi.org/10.1175/JCLI-D-12-00720.1.

    • Search Google Scholar
    • Export Citation
  • Parker, C. L., P. A. Mooney, M. A. Webster, and L. N. Boisvert, 2022: The influence of recent and future climate change on spring Arctic cyclones. Nat. Commun., 13, 6514, https://doi.org/10.1038/s41467-022-34126-7.

    • Search Google Scholar
    • Export Citation
  • Persson, P. O. G., C. W. Fairall, E. L. Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, https://doi.org/10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 1989: On the statistical analysis of cyclone deepening rates. Mon. Wea. Rev., 117, 22932298, https://doi.org/10.1175/1520-0493(1989)117<2293:OTSAOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “bomb”. Mon. Wea. Rev., 108, 15891606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Coauthors, 2019: Extratropical cyclones: A century of research on meteorology’s centerpiece. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0015.1.

  • Serreze, M. C., 1995: Climatological aspects of cyclone development and decay in the Arctic. Atmos.–Ocean, 33 (1), 123, https://doi.org/10.1080/07055900.1995.9649522.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., and R. G. Barry, 2005: The Arctic Climate System. Cambridge University Press, 385 pp.

  • Serreze, M. C., and A. P. Barrett, 2008: The summer cyclone maximum over the central Arctic Ocean. J. Climate, 21, 10481065, https://doi.org/10.1175/2007JCLI1810.1.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., F. Carse, R. G. Barry, and J. C. Rogers, 1997: Icelandic low cyclone activity: Climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation. J. Climate, 10, 453464, https://doi.org/10.1175/1520-0442(1997)010<0453:ILCACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serreze, M. C., A. H. Lynch, and M. P. Clark, 2001: The Arctic frontal zone as seen in the NCEP–NCAR reanalysis. J. Climate, 14, 15501567, https://doi.org/10.1175/1520-0442(2001)014<1550:TAFZAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., T. Hampel, and A. J. Krueger, 1987: The Arctic tropopause fold. Mon. Wea. Rev., 115, 444454, https://doi.org/10.1175/1520-0493(1987)115<0444:TATF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and I. Rudeva, 2012: The great Arctic cyclone of August 2012. Geophys. Res. Lett., 39, L23709, https://doi.org/10.1029/2012GL054259.

    • Search Google Scholar
    • Export Citation
  • Sorteberg, A., and J. E. Walsh, 2008: Seasonal cyclone variability at 70°N and its impact on moisture transport into the Arctic. Tellus, 60A, 570586, https://doi.org/10.1111/j.1600-0870.2007.00314.x.

    • Search Google Scholar
    • Export Citation
  • Stern, D. P., J. D. Doyle, N. P. Barton, P. M. Finocchio, W. A. Komaromi, and E. J. Metzger, 2020: The impact of an intense cyclone on short-term sea ice loss in a fully coupled atmosphere-ocean-ice model. Geophys. Res. Lett., 47, e2019GL085580, https://doi.org/10.1029/2019GL085580.

    • Search Google Scholar
    • Export Citation
  • Tao, W., J. Zhang, and X. Zhang, 2017: The role of stratosphere vortex downward intrusion in a long-lasting late-summer Arctic storm. Quart. J. Roy. Meteor. Soc., 143, 19531966, https://doi.org/10.1002/qj.3055.

    • Search Google Scholar
    • Export Citation
  • Tetzner, D., E. Thomas, and C. Allen, 2019: A validation of ERA5 reanalysis data in the southern Antarctic Peninsula—Ellsworth land region, and its implications for ice core studies. Geosciences, 9, 289, https://doi.org/10.3390/geosciences9070289.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., 2007: Is there a diurnal cycle in the summer cloud-capped Arctic boundary layer? J. Atmos. Sci., 64, 39703986, https://doi.org/10.1175/2007JAS2257.1.

    • Search Google Scholar
    • Export Citation
  • Vessey, A. F., K. I. Hodges, L. C. Shaffrey, and J. J. Day, 2020: An inter-comparison of Arctic synoptic scale storms between four global reanalysis datasets. Climate Dyn., 54, 27772795, https://doi.org/10.1007/s00382-020-05142-4.

    • Search Google Scholar
    • Export Citation
  • Vessey, A. F., K. I. Hodges, L. C. Shaffrey, and J. J. Day, 2022: The composite development and structure of intense synoptic-scale Arctic cyclones. Wea. Climate Dyn., 3, 10971112, https://doi.org/10.5194/wcd-3-1097-2022.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., S. Bigalke, S. A. McAfee, R. Lader, M. C. Serreze, and T. J. Ballinger, 2023: Precipitation [in “State of the Climate in 2022”]. Bull. Amer. Meteor. Soc., 104 (9), S281S284, https://doi.org/10.1175/2023BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and C. S. Zender, 2011: Arctic and Antarctic diurnal and seasonal variations of snow albedo from multiyear baseline surface radiation network measurements. J. Geophys. Res., 116, F03008, https://doi.org/10.1029/2010JF001864.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., 2018: What is the key feature of convection leading up to tropical cyclone formation? J. Atmos. Sci., 75, 16091629, https://doi.org/10.1175/JAS-D-17-0131.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., J. Walsh, S. Szymborski, and M. Peng, 2020: Rapid Arctic sea ice loss on the synoptic time scale and related atmospheric circulation anomalies. J. Climate, 33, 15971617, https://doi.org/10.1175/JCLI-D-19-0528.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., and Coauthors, 2023: The role of Rossby waves in polar weather and climate. Wea. Climate Dyn., 4, 6180, https://doi.org/10.5194/wcd-4-61-2023.

    • Search Google Scholar
    • Export Citation
  • Yamagami, A., M. Matsueda, and H. L. Tanaka, 2018: Predictability of the 2012 great Arctic cyclone on medium-range timescales. Polar Sci., 15, 1323, https://doi.org/10.1016/j.polar.2018.01.002.

    • Search Google Scholar
    • Export Citation
  • Yang, M., Z. Wang, R. M. Rauber, and J. E. Walsh, 2024: Seasonality, latitudinal dependence and structural evolution of Arctic cyclones. J. Climate, 37, 19371950, https://doi.org/10.1175/JCLI-D-23-0445.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. Lindsay, A. Schweiger, and M. Steele, 2013: The impact of an intense summer cyclone on 2012 Arctic sea ice retreat. Geophys. Res. Lett., 40, 720726, https://doi.org/10.1002/grl.50190.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 23002317, https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., and Coauthors, 2023: Arctic cyclones have become more intense and longer-lived over the past seven decades. Commun Earth Environ, 4, 348, https://doi.org/10.1038/s43247-023-01003-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 472 472 24
Full Text Views 136 136 20
PDF Downloads 165 165 25