Sensitivity of Coastal Squall-Line Evolution to Numerical Sea-Breeze Initialization Method

Fan Wu aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Fan Wu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2505-0146
and
Kelly Lombardo aDepartment of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kelly Lombardo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study employs 3D idealized numerical experiments to investigate the physical processes associated with coastal convection initiation (CI) as an offshore-moving squall line traverses a mountainous coastal region. A squall line can propagate discretely as convection initiates over the lee slope downstream of the primary storm as the cold pool collides with a sea breeze. Intensity of the initiating convection, thus the downstream squall line, is sensitive to the sea-breeze numerical initialization method, since it influences sea-breeze and cold pool characteristics, instability and vertical wind shear in the sea-breeze environment, and ultimately the vertical acceleration of air parcels during CI. Here, sea breezes are generated through four commonly used numerical methods: a cold-block marine atmospheric boundary layer (MABL), a prescribed surface sensible heat flux function, a prescribed surface sensible plus latent heat flux functions, and radiation plus surface-layer parameterization schemes. For MABL-initialized sea breezes, shallow weak sea-breeze flow in a relatively low instability environment results in weak CI. For the remainder, deeper stronger sea-breeze flow in an environment of enhanced instability supports more robust CI. In a subset of experiments, however, the vertical trajectory of air parcels is suppressed leading to weaker convection. Downward acceleration forms due to the horizontal rotation of the sea-breeze flow. Accurate simulations of coastal convective storms rely on an accurate representation of sea breezes. For idealized experiments such as the present simulations, a combination of initialization methods likely produces a more realistic representation of sea breeze and the associated physical processes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fan Wu, fvw5116@psu.edu

Abstract

This study employs 3D idealized numerical experiments to investigate the physical processes associated with coastal convection initiation (CI) as an offshore-moving squall line traverses a mountainous coastal region. A squall line can propagate discretely as convection initiates over the lee slope downstream of the primary storm as the cold pool collides with a sea breeze. Intensity of the initiating convection, thus the downstream squall line, is sensitive to the sea-breeze numerical initialization method, since it influences sea-breeze and cold pool characteristics, instability and vertical wind shear in the sea-breeze environment, and ultimately the vertical acceleration of air parcels during CI. Here, sea breezes are generated through four commonly used numerical methods: a cold-block marine atmospheric boundary layer (MABL), a prescribed surface sensible heat flux function, a prescribed surface sensible plus latent heat flux functions, and radiation plus surface-layer parameterization schemes. For MABL-initialized sea breezes, shallow weak sea-breeze flow in a relatively low instability environment results in weak CI. For the remainder, deeper stronger sea-breeze flow in an environment of enhanced instability supports more robust CI. In a subset of experiments, however, the vertical trajectory of air parcels is suppressed leading to weaker convection. Downward acceleration forms due to the horizontal rotation of the sea-breeze flow. Accurate simulations of coastal convective storms rely on an accurate representation of sea breezes. For idealized experiments such as the present simulations, a combination of initialization methods likely produces a more realistic representation of sea breeze and the associated physical processes.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Fan Wu, fvw5116@psu.edu
Save
  • Abulikemu, A., Y. Wang, R. Gao, Y. Wang, and X. Xu, 2019: A numerical study of convection initiation associated with a gust front in Bohai Bay Region, North China. J. Geophys. Res. Atmos., 124, 13 84313 860, https://doi.org/10.1029/2019JD030883.

    • Search Google Scholar
    • Export Citation
  • Antonelli, M., and R. Rotunno, 2007: Large-eddy simulation of the onset of the sea breeze. J. Atmos. Sci., 64, 44454457, https://doi.org/10.1175/2007JAS2261.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. D. Olivier, and D. H. Levinson, 1993: Evolution of the Monterey Bay sea-breeze layer as observed by pulsed Doppler lidar. J. Atmos. Sci., 50, 39593982, https://doi.org/10.1175/1520-0469(1993)050<3959:EOTMBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barthlott, C., and D. J. Kirshbaum, 2013: Sensitivity of deep convection to terrain forcing over Mediterranean islands. Quart. J. Roy. Meteor. Soc., 139, 17621779, https://doi.org/10.1002/qj.2089.

    • Search Google Scholar
    • Export Citation
  • Bastin, S., and P. Drobinski, 2006: Sea-breeze-induced mass transport over complex terrain in south-eastern France: A case-study. Quart. J. Roy. Meteor. Soc., 132, 405423, https://doi.org/10.1256/qj.04.111.

    • Search Google Scholar
    • Export Citation
  • Blamey, R. C., and C. J. C. Reason, 2009: Numerical simulation of a mesoscale convective system over the East Coast of South Africa. Tellus, 61A, 1734, https://doi.org/10.1111/j.1600-0870.2008.00366.x.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, Y., and Coauthors, 2021: Exploring diurnal cycles of surface urban heat island intensity in Boston with land surface temperature data derived from GOES-R geostationary satellites. Sci. Total Environ., 763, 144224, https://doi.org/10.1016/j.scitotenv.2020.144224.

    • Search Google Scholar
    • Export Citation
  • Chen, F., S. Miao, M. Tewari, J.-W. Bao, and H. Kusaka, 2011: A numerical study of interactions between surface forcing and sea breeze circulations and their effects on stagnation in the greater Houston area. J. Geophys. Res., 116, D12105, https://doi.org/10.1029/2010JD015533.

    • Search Google Scholar
    • Export Citation
  • Chen, G., H. Iwai, S. Ishii, K. Saito, H. Seko, W. Sha, and T. Iwasaki, 2019: Structures of the sea-breeze front in dual-Doppler lidar observation and coupled mesoscale-to-LES modeling. J. Geophys. Res. Atmos., 124, 23972413, https://doi.org/10.1029/2018JD029017.

    • Search Google Scholar
    • Export Citation
  • Cohuet, J. B., R. Romero, V. Homar, V. Ducrocq, and C. Ramis, 2011: Initiation of a severe thunderstorm over the Mediterranean Sea. Atmos. Res., 100, 603620, https://doi.org/10.1016/j.atmosres.2010.11.002.

    • Search Google Scholar
    • Export Citation
  • Crosman, E. T., and J. D. Horel, 2012: Idealized large-eddy simulations of sea and lake breezes: Sensitivity to lake diameter, heat flux and stability. Bound.-Layer Meteor., 144, 309328, https://doi.org/10.1007/s10546-012-9721-x.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., M. A. Jiménez, M. Telišman Prtenjak, and B. Grisogono, 2014: Study of a sea-breeze case through momentum, temperature, and turbulence budgets. J. Appl. Meteor. Climatol., 53, 25892609, https://doi.org/10.1175/JAMC-D-14-0007.1.

    • Search Google Scholar
    • Export Citation
  • Dailey, P. S., and R. G. Fovell, 1999: Numerical simulation of the interaction between the sea-breeze front and horizontal convective rolls. Part I: Offshore ambient flow. Mon. Wea. Rev., 127, 858878, https://doi.org/10.1175/1520-0493(1999)127<0858:NSOTIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, S. R., J. T. Farrar, R. A. Weller, H. Jiang, and L. J. Pratt, 2019: The land-sea breeze of the red sea: Observations, simulations, and relationships to regional moisture transport. J. Geophys. Res. Atmos., 124, 13 80313 825, https://doi.org/10.1029/2019JD031007.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, M. Xue, A. Shapiro, J. A. Milbrandt, and A. D. Schenkman, 2016: Sensitivity of real-data simulations of the 3 May 1999 Oklahoma City tornadic supercell and associated tornadoes to multimoment microphysics. Part II: Analysis of buoyancy and dynamic pressure forces in simulated tornado-like vortices. J. Atmos. Sci., 73, 10391061, https://doi.org/10.1175/JAS-D-15-0114.1.

    • Search Google Scholar
    • Export Citation
  • DeLonge, M. S., J. D. Fuentes, S. Chan, P. A. Kucera, E. Joseph, A. T. Gaye, and B. Daouda, 2010: Attributes of mesoscale convective systems at the land-ocean transition in Senegal during NASA African monsoon multidisciplinary analyses 2006. J. Geophys. Res., 115, D10213, https://doi.org/10.1029/2009JD012518.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and P. M. Markowski, 2004: Is buoyancy a relative quantity? Mon. Wea. Rev., 132, 853863, https://doi.org/10.1175/1520-0493(2004)132<0853:IBARQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fankhauser, J. C., N. A. Crook, J. Tuttle, L. J. Miller, and C. G. Wade, 1995: Initiation of deep convection along boundary layer convergence lines in a semitropical environment. Mon. Wea. Rev., 123, 291314, https://doi.org/10.1175/1520-0493(1995)123<0291:IODCAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., 2005: Convective initiation ahead of the sea-breeze front. Mon. Wea. Rev., 133, 264278, https://doi.org/10.1175/MWR-2852.1.

    • Search Google Scholar
    • Export Citation
  • Frame, J., and P. Markowski, 2006: The interaction of simulated squall lines with idealized mountain ridges. Mon. Wea. Rev., 134, 19191941, https://doi.org/10.1175/MWR3157.1.

    • Search Google Scholar
    • Export Citation
  • Fu, S., R. Rotunno, J. Chen, X. Deng, and H. Xue, 2021: A large-eddy simulation study of deep-convection initiation through the collision of two sea-breeze fronts. Atmos. Chem. Phys., 21, 92899308, https://doi.org/10.5194/acp-21-9289-2021.

    • Search Google Scholar
    • Export Citation
  • Furberg, M., D. G. Steyn, and M. Baldi, 2002: The climatology of sea breezes on Sardinia. Int. J. Climatol., 22, 917932, https://doi.org/10.1002/joc.780.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, https://doi.org/10.1175/JCLI4297.1.

    • Search Google Scholar
    • Export Citation
  • Gal-Chen, T., and R. C. J. Somerville, 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys., 17, 209228, https://doi.org/10.1016/0021-9991(75)90037-6.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1990: The internal boundary layer—A review. Bound.-Layer Meteor., 50, 171203, https://doi.org/10.1007/BF00120524.

  • Garstang, M., H. L. Massie Jr., J. Halverson, S. Greco, and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608622, https://doi.org/10.1175/1520-0493(1994)122<0608:ACSLPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gowan, T. M., W. J. Steenburgh, and J. R. Minder, 2021: Downstream evolution and coastal-to-inland transition of landfalling lake-effect systems. Mon. Wea. Rev., 149, 10231040, https://doi.org/10.1175/MWR-D-20-0253.1.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2014: Aerosol-cloud-land surface interactions within tropical sea breeze convection. J. Geophys. Res. Atmos., 119, 83408361, https://doi.org/10.1002/2014JD021912.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Search Google Scholar
    • Export Citation
  • Grau, A., M. A. Jiménez, and J. Cuxart, 2021: Statistical characterization of the sea-breeze physical mechanisms through in-situ and satellite observations. Int. J. Climatol., 41, 1730, https://doi.org/10.1002/joc.6606.

    • Search Google Scholar
    • Export Citation
  • Gray, B. M., 1991: CaPE experiment proceeds in Florida. Bull. Amer. Meteor. Soc., 72, 1287.

  • Greco, S., J. Scala, J. Halverson, H. L. Massie Jr., W.-K. Tao, and M. Garstang, 1994: Amazon coastal squall lines. Part II: Heat and moisture transports. Mon. Wea. Rev., 122, 623635, https://doi.org/10.1175/1520-0493(1994)122<0623:ACSLPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., 2003: On the pressure field in the slope wind layer. J. Atmos. Sci., 60, 16321635, https://doi.org/10.1175/1520-0469(2003)60<1632:OTPFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Liu, Y. Liu, and J. C. Knievel, 2019a: Budget analyses of a record-breaking rainfall event in the coastal metropolitan City of Guangzhou, China. J. Geophys. Res. Atmos., 124, 93919406, https://doi.org/10.1029/2018JD030229.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Liu, Y. Liu, H. Li, and J. C. Knievel, 2019b: Mechanisms for a record-breaking rainfall in the coastal metropolitan city of Guangzhou, China: Observation analysis and nested very large eddy simulation with the WRF model. J. Geophys. Res. Atmos., 124, 13701391, https://doi.org/10.1029/2018JD029668.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Ichikawa, H., and T. Yasunari, 2007: Propagating diurnal disturbances embedded in the Madden-Julian Oscillation. Geophys. Res. Lett., 34, L18811, https://doi.org/10.1029/2007GL030480.

    • Search Google Scholar
    • Export Citation
  • Igel, A. L., S. C. van den Heever, and J. S. Johnson, 2018: Meteorological and land surface properties impacting sea breeze extent and aerosol distribution in a dry environment. J. Geophys. Res. Atmos., 123, 2237, https://doi.org/10.1002/2017JD027339.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., C. G. Little, W. J. Shaw, R. M. Banta, P. A. Durkee, and R. M. Hardesty, 1990: The Land/Sea Breeze Experiment (LASBEX). Bull. Amer. Meteor. Soc., 71, 656664, https://doi.org/10.1175/1520-0477-71.5.656.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2015: Effective buoyancy, inertial pressure, and the mechanical generation of boundary layer mass flux by cold pools. J. Atmos. Sci., 72, 31993213, https://doi.org/10.1175/JAS-D-14-0349.1.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and R. A. Anthes, 1977: The applicability of a mixed–layer model of the planetary boundary layer to real-data forecasting. Mon. Wea. Rev., 105, 13511371, https://doi.org/10.1175/1520-0493(1977)105<1351:TAOAMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., 1995: Convection initiation associated with a sea-breeze front, a gust front, and their collision. Mon. Wea. Rev., 123, 29132933, https://doi.org/10.1175/1520-0493(1995)123<2913:CIAWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuo, K.-T., and C.-M. Wu, 2019: The precipitation hotspots of afternoon thunderstorms over the Taipei Basin: Idealized numerical simulations. J. Meteor. Soc. Japan, 97, 501517, https://doi.org/10.2151/jmsj.2019-031.

    • Search Google Scholar
    • Export Citation
  • Kurz, M., and A. D. Fontana, 2004: A case of cyclogenesis over the western Mediterranean Sea with extraordinary convective activity. Meteor. Appl., 11, 97113, https://doi.org/10.1017/S1350482704001161.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2010: Forecasting the maintenance of mesoscale convective systems crossing the Appalachian Mountains. Wea. Forecasting, 25, 11791195, https://doi.org/10.1175/2010WAF2222379.1.

    • Search Google Scholar
    • Export Citation
  • Letkewicz, C. E., and M. D. Parker, 2011: Impact of environmental variations on simulated squall lines interacting with terrain. Mon. Wea. Rev., 139, 31633183, https://doi.org/10.1175/2011MWR3635.1.

    • Search Google Scholar
    • Export Citation
  • Li, H., Y. Huang, S. Hu, N. Wu, X. Liu, and H. Xiao, 2021: Roles of terrain, surface roughness, and cold pool outflows in an extreme rainfall event over the coastal region of South China. J. Geophys. Res. Atmos., 126, e2021JD035556, https://doi.org/10.1029/2021JD035556.

    • Search Google Scholar
    • Export Citation
  • Li, J., B. Wang, and D.-H. Wang, 2012: The characteristics of Mesoscale Convective Systems (MCSs) over East Asia in warm seasons. Atmos. Ocean. Sci. Lett., 5, 102107, https://doi.org/10.1080/16742834.2012.11446973.

    • Search Google Scholar
    • Export Citation
  • Li, Y., and R. E. Carbone, 2015: Offshore propagation of coastal precipitation. J. Atmos. Sci., 72, 45534568, https://doi.org/10.1175/JAS-D-15-0104.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K., 2020: Squall line response to coastal mid-Atlantic thermodynamic heterogeneities. J. Atmos. Sci., 77, 41434170, https://doi.org/10.1175/JAS-D-20-0044.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2010: The spatial and temporal distribution of organized convective structures over the Northeast and their ambient conditions. Mon. Wea. Rev., 138, 44564474, https://doi.org/10.1175/2010MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2011: Convective storm structures and ambient conditions associated with severe weather over the northeast United States. Wea. Forecasting, 26, 940956, https://doi.org/10.1175/WAF-D-11-00002.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2012: Ambient conditions associated with the maintenance and decay of quasi-linear convective systems crossing the northeastern U.S. coast. Mon. Wea. Rev., 140, 38053819, https://doi.org/10.1175/MWR-D-12-00050.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and B. A. Colle, 2013: Processes controlling the structure and longevity of two quasi-linear convective systems crossing the southern New England coast. Mon. Wea. Rev., 141, 37103734, https://doi.org/10.1175/MWR-D-12-00336.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and T. Kading, 2018: The behavior of squall lines in horizontally heterogeneous coastal environments. J. Atmos. Sci., 75, 12431269, https://doi.org/10.1175/JAS-D-17-0248.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., E. Sinsky, Y. Jia, M. M. Whitney, and J. Edson, 2016: Sensitivity of simulated sea breezes to initial conditions in complex coastal regions. Mon. Wea. Rev., 144, 12991320, https://doi.org/10.1175/MWR-D-15-0306.1.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., E. Sinsky, J. Edson, M. M. Whitney, and Y. Jia, 2018: Sensitivity of offshore surface fluxes and sea breezes to the spatial distribution of sea-surface temperature. Bound.-Layer Meteor., 166, 475502, https://doi.org/10.1007/s10546-017-0313-7.

    • Search Google Scholar
    • Export Citation
  • Lu, R., and R. P. Turco, 1994: Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects. J. Atmos. Sci., 51, 22852308, https://doi.org/10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrer, Y., and R. A. Pielke, 1977: The effects of topography on sea and land breezes in a two-dimensional numerical model. Mon. Wea. Rev., 105, 11511162, https://doi.org/10.1175/1520-0493(1977)105<1151:TEOTOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1982: Momentum balance of gravity flows. J. Atmos. Sci., 39, 27012711, https://doi.org/10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., T. T. Warner, M. Xu, and A. J. Negri, 2003: Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Mon. Wea. Rev., 131, 799812, https://doi.org/10.1175/1520-0493(2003)131<0799:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., and G. H. Bryan, 2016: LES of laminar flow in the PBL: A potential problem for convective storm simulations. Mon. Wea. Rev., 144, 18411850, https://doi.org/10.1175/MWR-D-15-0439.1.

    • Search Google Scholar
    • Export Citation
  • Mattos, E. V., and L. A. T. Machado, 2011: Cloud-to-ground lightning and mesoscale convective systems. Atmos. Res., 99, 377390, https://doi.org/10.1016/j.atmosres.2010.11.007.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., D. Yan, and Y. Zhang, 2013: General features of squall lines in East China. Mon. Wea. Rev., 141, 16291647, https://doi.org/10.1175/MWR-D-12-00208.1.

    • Search Google Scholar
    • Export Citation
  • Miller, S. T. K., B. D. Keim, R. W. Talbot, and H. Mao, 2003: Sea breeze: Structure, forecasting, and impacts. Rev. Geophys., 41, 1011, https://doi.org/10.1029/2003RG000124.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., H. W. Barker, J. N. S. Cole, M. J. Iacono, and R. Pincus, 2008: Impact of a new radiation package, McRad, in the ECMWF integrated forecasting system. Mon. Wea. Rev., 136, 47734798, https://doi.org/10.1175/2008MWR2363.1.

    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002a: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Quart. J. Roy. Meteor. Soc., 128, 19531971, https://doi.org/10.1256/003590002320603485.

    • Search Google Scholar
    • Export Citation
  • Morel, C., and S. Senesi, 2002b: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Quart. J. Roy. Meteor. Soc., 128, 19731995, https://doi.org/10.1256/003590002320603494.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Milbrandt, G. H. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part II: Case study comparisons with observations and other schemes. J. Atmos. Sci., 72, 312339, https://doi.org/10.1175/JAS-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112 (1), 131, https://doi.org/10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nunalee, C. G., and S. Basu, 2014: Mesoscale modeling of coastal low-level jets: Implications for offshore wind resource estimation. Wind Energy, 17, 11991216, https://doi.org/10.1002/we.1628.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., 2016: The impact of effective buoyancy and dynamic pressure forcing on vertical velocities within two-dimensional updrafts. J. Atmos. Sci., 73, 45314551, https://doi.org/10.1175/JAS-D-16-0016.1.

    • Search Google Scholar
    • Export Citation
  • Peters, J. M., and R. S. Schumacher, 2016: Dynamics governing a simulated mesoscale convective system with a training convective line. J. Atmos. Sci., 73, 26432664, https://doi.org/10.1175/JAS-D-15-0199.1.

    • Search Google Scholar
    • Export Citation
  • Peters, K., and C. Hohenegger, 2017: On the dependence of squall-line characteristics on surface conditions. J. Atmos. Sci., 74, 22112228, https://doi.org/10.1175/JAS-D-16-0290.1.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and Y.-L. Lin, 2007: The effects of a mountain on the propagation of a preexisting convective system for blocked and unblocked flow regimes. J. Atmos. Sci., 64, 24012421, https://doi.org/10.1175/JAS3959.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, F. J., M. D. Patterson, and S. C. Sherwood, 2013: A numerical modeling study of the propagation of idealized sea-breeze density currents. J. Atmos. Sci., 70, 653668, https://doi.org/10.1175/JAS-D-12-0113.1.

    • Search Google Scholar
    • Export Citation
  • Salio, P., M. Nicolini, and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, https://doi.org/10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Shen, L., J. Sun, and R. Yuan, 2018: Idealized large-eddy simulation study of interaction between urban heat island and sea breeze circulations. Atmos. Res., 214, 338347, https://doi.org/10.1016/j.atmosres.2018.08.010.

    • Search Google Scholar
    • Export Citation
  • Smith, V. H., S. D. Mobbs, R. R. Burton, M. Hobby, F. Aoshima, V. Wulfmeyer, and P. Di Girolamo, 2015: The role of orography in the regeneration of convection: A case study from the convective and orographically-induced precipitation study. Meteor. Z., 24, 8397, https://doi.org/10.1127/metz/2014/0418.

    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., T. Holt, and J. Pullen, 2007: Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteor. Soc., 133, 579594, https://doi.org/10.1002/qj.52.

    • Search Google Scholar
    • Export Citation
  • Tudurí, E., and C. Ramis, 1997: The environments of significant convective events in the western Mediterranean. Wea. Forecasting, 12, 294306, https://doi.org/10.1175/1520-0434(1997)012<0294:TEOSCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van Delden, A., 1998: The synoptic setting of a thundery low and associated prefrontal squall line in western Europe. Meteor. Atmos. Phys., 65, 113131, https://doi.org/10.1007/BF01030272.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., and J. K. Lew, 1993: Observations of a Florida waterspout during CaPE. Wea. Forecasting, 8, 412423, https://doi.org/10.1175/1520-0434(1993)008<0412:OOAFWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., and D. J. Kirshbaum, 2017: Idealized simulations of sea breezes over mountainous islands. Quart. J. Roy. Meteor. Soc., 143, 16571669, https://doi.org/10.1002/qj.3037.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., B. E. Mapes, and M. Xu, 2003: Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Mon. Wea. Rev., 131, 813829, https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wissmeier, U., R. K. Smith, and R. Goler, 2010: The formation of a multicell thunderstorm behind a sea-breeze front. Quart. J. Roy. Meteor. Soc., 136, 21762188, https://doi.org/10.1002/qj.691.

    • Search Google Scholar
    • Export Citation
  • Wu, F., and K. Lombardo, 2021: Precipitation enhancement in squall lines moving over mountainous coastal regions. J. Atmos. Sci., 78, 30893113, https://doi.org/10.1175/JAS-D-20-0222.1.

    • Search Google Scholar
    • Export Citation
  • Wu, F., and K. Lombardo, 2023: The impact of offshore-propagating squall lines on coastal-mountain flows. Geophys. Res. Lett., 50, e2023GL102825, https://doi.org/10.1029/2023GL102825.

    • Search Google Scholar
    • Export Citation
  • Wu, F., X. Cui, D.-L. Zhang, D. Liu, and D. Zheng, 2016: SAFIR-3000 lightning statistics over the Beijing metropolitan region during 2005–07. J. Appl. Meteor. Climatol., 55, 26132633, https://doi.org/10.1175/JAMC-D-16-0030.1.

    • Search Google Scholar
    • Export Citation
  • Wu, F., X. Cui, D.-L. Zhang, and L. Qiao, 2017: The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region. Atmos. Res., 195, 3143, https://doi.org/10.1016/j.atmosres.2017.04.032.

    • Search Google Scholar
    • Export Citation
  • Yuan, J., and R. A. Houze Jr., 2010: Global variability of mesoscale convective system anvil structure from a-train satellite data. J. Climate, 23, 58645888, https://doi.org/10.1175/2010JCLI3671.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., Z. Meng, P. Zhu, T. Su, and G. Zhai, 2016: Mesoscale modeling study of severe convection over complex terrain. Adv. Atmos. Sci., 33, 12591270, https://doi.org/10.1007/s00376-016-5221-0.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 461 461 74
Full Text Views 161 161 37
PDF Downloads 193 193 46