Underestimates of Orographic Precipitation in Idealized Simulations. Part I: Evidence from Unidirectional Warm-Sector Environments

Lydia Tierney aUniversity of Washington, Seattle, Washington

Search for other papers by Lydia Tierney in
Current site
Google Scholar
PubMed
Close
and
Dale Durran aUniversity of Washington, Seattle, Washington

Search for other papers by Dale Durran in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6390-2584
Restricted access

Abstract

Heavy precipitation in midlatitude mountain ranges is largely driven by the episodic passage of weather systems. Previous studies have shown a high correlation between the integrated vapor transport (IVT) in the airstream striking a mountain and the precipitation rate. Using data collected during the Olympic Mountain Experiment (OLYMPEX) project from a pair of sounding stations and a dense precipitation network, we further document the tight relation between IVT and precipitation rate and obtain results consistent with earlier work. We also survey previous studies that simulated orographic precipitation forced by unidirectional shear flows. Some of these simulations were performed using models that produce reasonably accurate rainfall totals in nested simulations of actual events driven by large-scale flows. Nevertheless, the increase in precipitation with IVT in all the simulations with unidirectional upstream flows is far lower than what would be expected based on the observationally derived correlation between IVT and precipitation rate. As a first step toward explaining this discrepancy, we conduct idealized simulations of a midlatitude cyclone striking a north–south ridge. The relationship between IVT and rainfall rate in this “Cyc+Mtn” simulation matches that which would be expected from observations. In contrast, when the conditions upstream of the ridge in the Cyc+Mtn case were used as upstream forcing in a horizontally uniform unidirectional flow with the same IVT over the same mountain ridge, far less precipitation was produced. These idealized simulations will, therefore, be used to study the discrepancy in rainfall between simulations driven by unidirectional shear flows and observations in a companion paper.

Significance Statement

Idealized simulations of orographic precipitation using horizontally uniform environmental forcing fail to capture the observed relationship between integrated water vapor flux impinging on the mountain and the precipitation rate. This suggests we need to improve the design of such idealized simulations.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dale Durran, drdee@uw.edu

Abstract

Heavy precipitation in midlatitude mountain ranges is largely driven by the episodic passage of weather systems. Previous studies have shown a high correlation between the integrated vapor transport (IVT) in the airstream striking a mountain and the precipitation rate. Using data collected during the Olympic Mountain Experiment (OLYMPEX) project from a pair of sounding stations and a dense precipitation network, we further document the tight relation between IVT and precipitation rate and obtain results consistent with earlier work. We also survey previous studies that simulated orographic precipitation forced by unidirectional shear flows. Some of these simulations were performed using models that produce reasonably accurate rainfall totals in nested simulations of actual events driven by large-scale flows. Nevertheless, the increase in precipitation with IVT in all the simulations with unidirectional upstream flows is far lower than what would be expected based on the observationally derived correlation between IVT and precipitation rate. As a first step toward explaining this discrepancy, we conduct idealized simulations of a midlatitude cyclone striking a north–south ridge. The relationship between IVT and rainfall rate in this “Cyc+Mtn” simulation matches that which would be expected from observations. In contrast, when the conditions upstream of the ridge in the Cyc+Mtn case were used as upstream forcing in a horizontally uniform unidirectional flow with the same IVT over the same mountain ridge, far less precipitation was produced. These idealized simulations will, therefore, be used to study the discrepancy in rainfall between simulations driven by unidirectional shear flows and observations in a companion paper.

Significance Statement

Idealized simulations of orographic precipitation using horizontally uniform environmental forcing fail to capture the observed relationship between integrated water vapor flux impinging on the mountain and the precipitation rate. This suggests we need to improve the design of such idealized simulations.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dale Durran, drdee@uw.edu
Save
  • Barrett, B. S., R. Garreaud, and M. Falvey, 2009: Effect of the Andes cordillera on precipitation from a midlatitude cold front. Mon. Wea. Rev., 137, 30923109, https://doi.org/10.1175/2009MWR2881.1.

    • Search Google Scholar
    • Export Citation
  • Cannon, D. J., D. J. Kirshbaum, and S. L. Gray, 2012: Under what conditions does embedded convection enhance orographic precipitation? Quart. J. Roy. Meteor. Soc., 138, 391406, https://doi.org/10.1002/qj.926.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, https://doi.org/10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and N. A. Bond, 2001: Research aircraft observations and numerical simulations of a warm front approaching Vancouver Island. Mon. Wea. Rev., 129, 978998, https://doi.org/10.1175/1520-0493(2001)129<0978:RAOANS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., and R. Wood, 2007: Precipitation and cloud structure in midlatitude cyclones. J. Climate, 20, 233254, https://doi.org/10.1175/JCLI3998.1.

    • Search Google Scholar
    • Export Citation
  • Fleming, E. L., S. Chandra, J. J. Barnett, and M. Corney, 1990: Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude. Adv. Space Res., 10, 1159, https://doi.org/10.1016/0273-1177(90)90386-E.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., and Coauthors, 2017: The Olympic Mountains Experiment (OLYMPEX). Bull. Amer. Meteor. Soc., 98, 21672188, https://doi.org/10.1175/BAMS-D-16-0182.1.

    • Search Google Scholar
    • Export Citation
  • Hughes, M., A. Hall, and R. G. Fovell, 2009: Blocking in areas of complex topography, and its influence on rainfall distributions. J. Atmos. Sci., 66, 508518, https://doi.org/10.1175/2008JAS2689.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kingsmill, D. E., P. J. Neiman, and A. B. White, 2016: Microphysics regime impacts on the relationship between orographic rain and orographic forcing in the coastal mountains of northern California. J. Hydrometeor., 17, 29052922, https://doi.org/10.1175/JHM-D-16-0103.1.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. M. Schultz, 2018: Convective cloud bands downwind of mesoscale mountain ridges. J. Atmos. Sci., 75, 42654286, https://doi.org/10.1175/JAS-D-18-0211.1.

    • Search Google Scholar
    • Export Citation
  • Lloveras, D. J., and D. R. Durran, 2024: Improving the representation of moisture and convective instability in baroclinic-wave channel simulations. Mon. Wea. Rev., 152, 14691486, https://doi.org/10.1175/MWR-D-23-0210.1, in press.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. D., J. R. Minder, P. J. Neiman, and E. Sukovich, 2010: Relationships between barrier jet heights, orographic precipitation gradients, and streamflow in the northern Sierra Nevada. J. Hydrometeor., 11, 11411156, https://doi.org/10.1175/2010JHM1264.1.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, https://doi.org/10.1175/2009JAS2965.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and R. A. Plumb, 2012: Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Elsevier, 344 pp.

  • McMurdie, L. A., A. K. Rowe, R. A. Houze Jr., S. R. Brodzik, J. P. Zagrodnik, and T. M. Schuldt, 2018: Terrain-enhanced precipitation processes above the melting layer: Results from OLYMPEX. J. Geophys. Res. Atmos., 123, 12 19412 209, https://doi.org/10.1029/2018JD029161.

    • Search Google Scholar
    • Export Citation
  • Menchaca, M. Q., and D. R. Durran, 2017: Mountain waves, downslope winds, and low-level blocking forced by a midlatitude cyclone encountering an isolated ridge. J. Atmos. Sci., 74, 617639, https://doi.org/10.1175/JAS-D-16-0092.1.

    • Search Google Scholar
    • Export Citation
  • Michaelis, A. C., A. C. Martin, M. A. Fish, C. W. Hecht, and F. M. Ralph, 2021: Modulation of atmospheric rivers by mesoscale frontal waves and latent heating: Comparison of two U.S. west coast events. Mon. Wea. Rev., 149, 27552776, https://doi.org/10.1175/MWR-D-20-0364.1.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, G. H. Roe, and A. M. Anders, 2008: The climatology of small-scale orographic precipitation over the Olympic Mountains: Patterns and processes. Quart. J. Roy. Meteor. Soc., 134, 817839, https://doi.org/10.1002/qj.258.

    • Search Google Scholar
    • Export Citation
  • Minder, J. R., D. R. Durran, and G. H. Roe, 2011: Mesoscale controls on the mountainside snow line. J. Atmos. Sci., 68, 21072127, https://doi.org/10.1175/JAS-D-10-05006.1.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., F. M. Ralph, A. B. White, D. E. Kingsmill, and P. O. G. Persson, 2002: The statistical relationship between upslope flow and rainfall in California’s coastal mountains: Observations during CALJET. Mon. Wea. Rev., 130, 14681492, https://doi.org/10.1175/1520-0493(2002)130<1468:TSRBUF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., A. B. White, F. M. Ralph, D. J. Gottas, and S. I. Gutman, 2009: A water vapour flux tool for precipitation forecasting. Proc. Inst. Civil Eng. Water Manage., 162, 8394, https://doi.org/10.1680/wama.2009.162.2.83.

    • Search Google Scholar
    • Export Citation
  • Picard, L., and C. Mass, 2017: The sensitivity of orographic precipitation to flow direction: An idealized modeling approach. J. Hydrometeor., 18, 16731688, https://doi.org/10.1175/JHM-D-16-0209.1.

    • Search Google Scholar
    • Export Citation
  • Purnell, D. J., and D. J. Kirshbaum, 2018: Synoptic control over orographic precipitation distributions during the Olympics Mountains Experiment (OLYMPEX). Mon. Wea. Rev., 146, 10231044, https://doi.org/10.1175/MWR-D-17-0267.1.

    • Search Google Scholar
    • Export Citation
  • Rutz, J. J., W. J. Steenburgh, and F. M. Ralph, 2014: Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Wea. Rev., 142, 905921, https://doi.org/10.1175/MWR-D-13-00168.1.

    • Search Google Scholar
    • Export Citation
  • Siler, N., and D. Durran, 2015: Assessing the impact of the tropopause on mountain waves and orographic precipitation using linear theory and numerical simulations. J. Atmos. Sci., 72, 803820, https://doi.org/10.1175/JAS-D-14-0200.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for research and NWP applications. J. Comput. Phys., 227, 34653485, https://doi.org/10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Tierney, L., and D. Durran, 2024: Underestimates of orographic precipitation in idealized simulations. Part II: Underlying causes. J. Atmos. Sci., 81, 14351447, https://doi.org/10.1175/JAS-D-23-0176.1.

    • Search Google Scholar
    • Export Citation
  • Viale, M., and M. N. Nuñez, 2011: Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeor., 12, 481507, https://doi.org/10.1175/2010JHM1284.1.

    • Search Google Scholar
    • Export Citation
  • Wilcox, L. J., B. J. Hoskins, and K. P. Shine, 2011: A global blended tropopause based on era data. Part I: Climatology. Quart. J. Roy. Meteor. Soc., 138, 561575, https://doi.org/10.1002/qj.951.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. A. McMurdie, R. A. Houze Jr., and S. Tanelli, 2019: Vertical structure and microphysical characteristics of frontal systems passing over a three-dimensional coastal mountain range. J. Atmos. Sci., 76, 15211546, https://doi.org/10.1175/JAS-D-18-0279.1.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., L. McMurdie, and R. Conrick, 2021: Microphysical enhancement processes within stratiform precipitation on the barrier and sub-barrier scale of the Olympic Mountains. Mon. Wea. Rev., 149, 503520, https://doi.org/10.1175/MWR-D-20-0164.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 380 380 142
Full Text Views 103 103 30
PDF Downloads 127 127 37