Thermodynamic Pathways of Vertical Wind Shear Impacting Tropical Cyclone Intensity Change: Energetics and Lagrangian Analysis

Zi-Qi Liu aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Zi-Qi Liu in
Current site
Google Scholar
PubMed
Close
and
Zhe-Min Tan aSchool of Atmospheric Sciences, Nanjing University, Nanjing, China

Search for other papers by Zhe-Min Tan in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2227-6900
Restricted access

Abstract

This study analyzes the variations in the thermodynamic cycle and energy of a tropical cyclone (TC) under the influence of vertical wind shear (VWS), exploring the possible thermodynamic pathways through which VWS affects TC intensity. The maximum energy harnessed by the TC diminishes alongside a decrease in storm intensity in the presence of VWS. In the sheared TC, the ascending branch of the thermodynamic cycles of TC shifts toward lower entropy, which is related to the reduction in entropy in the eyewall and/or the increase in entropy and enhanced upward motion outside the eyewall. Moreover, the descending leg shifts toward higher entropy due to the increase in entropy and weakening of downward motion in both the ambient environment and the upper troposphere. These changes in the ascending and descending branches could reduce the work done by the heat engine cycle, with the former playing a primary role in the presence of VWS. Given that the ascending branch is influenced by the eyewall and the rainbands outside the eyewall under VWS, the thermodynamic pathways could be categorized into inner ventilation and outer ventilation based on the location of their roles. The pathways associated with inner ventilation primarily reduce the entropy in the eyewall. In addition to the conventional low- and midlevel ventilation, the inner ventilation also encompasses new pathways entering the midlevel eyewall after descending from the upper level and ascending from the boundary layer. Conversely, the pathways of outer ventilation are related to the increase in the entropy outside the eyewall. These include the ascent of high-entropy air to the middle and upper troposphere related to the inner and outer rainbands, the outward advection of high-entropy air from the eyewall in the midlevel and upper level, and air warming by the descending draft from the upper- to midlevel troposphere. These insights contribute to a nuanced understanding of the sophisticated interactions within TCs and their response to VWS.

Significance Statement

Vertical wind shear (VWS) is known to modify the thermodynamic structure of tropical cyclones (TCs), thereby affecting their development. The incorporation of multiple thermodynamic mechanisms amplifies the complexity of related studies and predictions. Within the context of a unified heat engine framework, this study aims to paint a relatively comprehensive picture of the key thermodynamic pathways through which VWS impacts the intensity of TCs. Contrary to previous studies, we emphasize the increase in entropy and the intensified upward motion outside the eyewall, which play pivotal roles in diminishing the intensity of TCs in the presence of VWS. Gaining an understanding of these critical mechanisms and structural changes offers insights and guidance that can enhance the prediction of sheared TCs.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn

Abstract

This study analyzes the variations in the thermodynamic cycle and energy of a tropical cyclone (TC) under the influence of vertical wind shear (VWS), exploring the possible thermodynamic pathways through which VWS affects TC intensity. The maximum energy harnessed by the TC diminishes alongside a decrease in storm intensity in the presence of VWS. In the sheared TC, the ascending branch of the thermodynamic cycles of TC shifts toward lower entropy, which is related to the reduction in entropy in the eyewall and/or the increase in entropy and enhanced upward motion outside the eyewall. Moreover, the descending leg shifts toward higher entropy due to the increase in entropy and weakening of downward motion in both the ambient environment and the upper troposphere. These changes in the ascending and descending branches could reduce the work done by the heat engine cycle, with the former playing a primary role in the presence of VWS. Given that the ascending branch is influenced by the eyewall and the rainbands outside the eyewall under VWS, the thermodynamic pathways could be categorized into inner ventilation and outer ventilation based on the location of their roles. The pathways associated with inner ventilation primarily reduce the entropy in the eyewall. In addition to the conventional low- and midlevel ventilation, the inner ventilation also encompasses new pathways entering the midlevel eyewall after descending from the upper level and ascending from the boundary layer. Conversely, the pathways of outer ventilation are related to the increase in the entropy outside the eyewall. These include the ascent of high-entropy air to the middle and upper troposphere related to the inner and outer rainbands, the outward advection of high-entropy air from the eyewall in the midlevel and upper level, and air warming by the descending draft from the upper- to midlevel troposphere. These insights contribute to a nuanced understanding of the sophisticated interactions within TCs and their response to VWS.

Significance Statement

Vertical wind shear (VWS) is known to modify the thermodynamic structure of tropical cyclones (TCs), thereby affecting their development. The incorporation of multiple thermodynamic mechanisms amplifies the complexity of related studies and predictions. Within the context of a unified heat engine framework, this study aims to paint a relatively comprehensive picture of the key thermodynamic pathways through which VWS impacts the intensity of TCs. Contrary to previous studies, we emphasize the increase in entropy and the intensified upward motion outside the eyewall, which play pivotal roles in diminishing the intensity of TCs in the presence of VWS. Gaining an understanding of these critical mechanisms and structural changes offers insights and guidance that can enhance the prediction of sheared TCs.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Zhe-Min Tan, zmtan@nju.edu.cn
Save
  • Alland, J. J., and C. A. Davis, 2022: Effects of surface fluxes on ventilation pathways and the intensification of Hurricane Michael (2018). J. Atmos. Sci., 79, 12111229, https://doi.org/10.1175/JAS-D-21-0166.1.

    • Search Google Scholar
    • Export Citation
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021a: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. J. Atmos. Sci., 78, 763782, https://doi.org/10.1175/JAS-D-20-0054.1.

    • Search Google Scholar
    • Export Citation
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021b: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation. J. Atmos. Sci., 78, 783796, https://doi.org/10.1175/JAS-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693709, https://doi.org/10.1002/qj.49711247308.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Chen, S. Y. S., J. A. Knaff, and F. D. Marks Jr., 2006: Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Wea. Rev., 134, 31903208, https://doi.org/10.1175/MWR3245.1.

    • Search Google Scholar
    • Export Citation
  • Corbosiero, K. L., and J. Molinari, 2002: The effects of vertical wind shear on the distribution of convection in tropical cyclones. Mon. Wea. Rev., 130, 21102123, https://doi.org/10.1175/1520-0493(2002)130<2110:TEOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeHart, J. C., R. A. Houze Jr., and R. F. Rogers, 2014: Quadrant distribution of tropical cyclone inner-core kinematics in relation to environmental shear. J. Atmos. Sci., 71, 27132732, https://doi.org/10.1175/JAS-D-13-0298.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, https://doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1997: Some aspects of hurricane inner-core dynamics and energetics. J. Atmos. Sci., 54, 10141026, https://doi.org/10.1175/1520-0469(1997)054<1014:SAOHIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, J., O. Pauluis, and F. Zhang, 2017: Isentropic analysis on the intensification of hurricane Edouard (2014). J. Atmos. Sci., 74, 41774197, https://doi.org/10.1175/JAS-D-17-0092.1.

    • Search Google Scholar
    • Export Citation
  • Fang, J., O. Pauluis, and F. Zhang, 2019: The thermodynamic cycles and associated energetics of hurricane Edouard (2014) during its intensification. J. Atmos. Sci., 76, 17691784, https://doi.org/10.1175/JAS-D-18-0221.1.

    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669700, https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2015: Effects of vertical wind shear on inner-core thermodynamics of an idealized simulated tropical cyclone. J. Atmos. Sci., 72, 511530, https://doi.org/10.1175/JAS-D-14-0050.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, H. F., and S. M. Imbembo, 1976: The structure of a small, intense Hurricane—Inez 1966. Mon. Wea. Rev., 104, 418442, https://doi.org/10.1175/1520-0493(1976)104<0418:TSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme. J. Korean Meteor. Soc., 42, 129151.

  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, https://doi.org/10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., S. A. Seseske, M. DeMaria, and J. L. Demuth, 2004: On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, https://doi.org/10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Wang, and Y. Duan, 2014: Effects of diabatic heating and cooling in the rapid filamentation zone on structure and intensity of a simulated tropical cyclone. J. Atmos. Sci., 71, 31443163, https://doi.org/10.1175/JAS-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Li, Q., Y. Wang, and Y. Duan, 2017: A numerical study of outer rainband formation in a sheared tropical cyclone. J. Atmos. Sci., 74, 203227, https://doi.org/10.1175/JAS-D-16-0123.1.

    • Search Google Scholar
    • Export Citation
  • McBride, J. L., and R. Zehr, 1981: Observational analysis of tropical cyclone formation. Part II: Comparison of non-developing versus developing systems. J. Atmos. Sci., 38, 11321151, https://doi.org/10.1175/1520-0469(1981)038<1132:OAOTCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, https://doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mrowiec, A. A., O. M. Pauluis, and F. Zhang, 2016: Isentropic analysis of a simulated hurricane. J. Atmos. Sci., 73, 18571870, https://doi.org/10.1175/JAS-D-15-0063.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2016: Tropical cyclone-relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Search Google Scholar
    • Export Citation
  • Paterson, L. A., B. N. Hanstrum, N. E. Davidson, and H. C. Weber, 2005: Influence of environmental vertical wind shear on the intensity of hurricane-strength tropical cyclones in the Australian region. Mon. Wea. Rev., 133, 36443660, https://doi.org/10.1175/MWR3041.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., 2016: The mean air flow as Lagrangian dynamics approximation and its application to moist convection. J. Atmos. Sci., 73, 44074425, https://doi.org/10.1175/JAS-D-15-0284.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and A. A. Mrowiec, 2013: Isentropic analysis of convective motions. J. Atmos. Sci., 70, 36733688, https://doi.org/10.1175/JAS-D-12-0205.1.

    • Search Google Scholar
    • Export Citation
  • Pauluis, O. M., and F. Zhang, 2017: Reconstruction of thermodynamic cycles in a high-resolution simulation of a hurricane. J. Atmos. Sci., 74, 33673381, https://doi.org/10.1175/JAS-D-16-0353.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., and Z.-M. Tan, 2013: The roles of asymmetric inflow forcing induced by outer rainbands in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 70, 953974, https://doi.org/10.1175/JAS-D-12-084.1.

    • Search Google Scholar
    • Export Citation
  • Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev., 138, 20922109, https://doi.org/10.1175/2010MWR3161.1.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., R. Rogers, and S. Lorsolo, 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., 2016: Meso-β-scale environment for the stationary band complex of vertically sheared tropical cyclones. Quart. J. Roy. Meteor. Soc., 142, 24422451, https://doi.org/10.1002/qj.2837.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Simpson, R., and R. Riehl, 1958: Mid-tropospheric ventilation as a constraint on hurricane development and maintenance. Preprints, Tech. Conf. on Hurricanes, Miami Beach, FL, Amer. Meteor. Soc., D4-1D4-10.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2010: Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 18171830, https://doi.org/10.1175/2010JAS3318.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J. Atmos. Sci., 69, 23942413, https://doi.org/10.1175/JAS-D-11-0232.1.

    • Search Google Scholar
    • Export Citation
  • Wadler, J. B., D. S. Nolan, J. A. Zhang, and L. K. Shay, 2021: Thermodynamic characteristics of downdrafts in tropical cyclones as seen in idealized simulations of different intensities. J. Atmos. Sci., 78, 35033524, https://doi.org/10.1175/JAS-D-21-0006.1.

    • Search Google Scholar
    • Export Citation
  • Wang, S., R. K. Smith, and M. T. Montgomery, 2020: Upper-tropospheric inflow layers in tropical cyclones. Quart. J. Roy. Meteor. Soc., 146, 34663487, https://doi.org/10.1002/qj.3856.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-F., and Z.-M. Tan, 2022: Essential dynamics of the vertical wind shear affecting the secondary eyewall formation in tropical cyclones. J. Atmos. Sci., 79, 28312847, https://doi.org/10.1175/JAS-D-21-0340.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 550 550 142
Full Text Views 170 170 30
PDF Downloads 226 226 44