Two Types of Transitions to Relatively Fast Spinup in Tropical Cyclone Simulations with Weak-to-Moderate Environmental Vertical Wind Shear

David A. Schecter aNorthWest Research Associates, Boulder, Colorado

Search for other papers by David A. Schecter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Tropical cyclone intensification is simulated with a cloud-resolving model under idealized conditions of constant SST and unidirectional environmental vertical wind shear maximized in the middle troposphere. The intensification process commonly involves a sharp transition to relatively fast spinup before the surface vortex achieves hurricane-force winds in the azimuthal mean. The vast majority of transitions fall into one of two categories labeled S and A. Type S transitions initiate quasi-symmetric modes of fast spinup. They occur in tropical cyclones after a major reduction of tilt and substantial azimuthal spreading of inner-core convection. The lead-up also entails gradual contractions of the radii of maximum wind speed rm and maximum precipitation. Type A transitions begin before an asymmetric tropical cyclone becomes vertically aligned. Instead of enabling the transition, alignment is an essential part of the initially asymmetric mode of fast spinup that follows. On average, type S transitions occur well after and type A transitions occur once the cyclonically rotating tilt vector becomes perpendicular to the shear vector. Prominent temporal peaks of lower-tropospheric CAPE and low-to-midlevel relative humidity averaged over the entire inner core of the low-level vortex characteristically coincide with type S but not with type A transitions. Prominent temporal peaks of precipitation and midlevel vertical mass flux in the meso-β-scale vicinity of the convergence center characteristically coincide with type A but not with type S transitions. Despite such differences, in both cases, the transitions tend not to begin before the distance between the low-level convergence and vortex centers divided by rm reduces to unity.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Schecter, schecter@nwra.com

Abstract

Tropical cyclone intensification is simulated with a cloud-resolving model under idealized conditions of constant SST and unidirectional environmental vertical wind shear maximized in the middle troposphere. The intensification process commonly involves a sharp transition to relatively fast spinup before the surface vortex achieves hurricane-force winds in the azimuthal mean. The vast majority of transitions fall into one of two categories labeled S and A. Type S transitions initiate quasi-symmetric modes of fast spinup. They occur in tropical cyclones after a major reduction of tilt and substantial azimuthal spreading of inner-core convection. The lead-up also entails gradual contractions of the radii of maximum wind speed rm and maximum precipitation. Type A transitions begin before an asymmetric tropical cyclone becomes vertically aligned. Instead of enabling the transition, alignment is an essential part of the initially asymmetric mode of fast spinup that follows. On average, type S transitions occur well after and type A transitions occur once the cyclonically rotating tilt vector becomes perpendicular to the shear vector. Prominent temporal peaks of lower-tropospheric CAPE and low-to-midlevel relative humidity averaged over the entire inner core of the low-level vortex characteristically coincide with type S but not with type A transitions. Prominent temporal peaks of precipitation and midlevel vertical mass flux in the meso-β-scale vicinity of the convergence center characteristically coincide with type A but not with type S transitions. Despite such differences, in both cases, the transitions tend not to begin before the distance between the low-level convergence and vortex centers divided by rm reduces to unity.

© 2024 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: David A. Schecter, schecter@nwra.com
Save
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021a: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. J. Atmos. Sci., 78, 763782, https://doi.org/10.1175/JAS-D-20-0054.1.

    • Search Google Scholar
    • Export Citation
  • Alland, J. J., B. H. Tang, K. L. Corbosiero, and G. H. Bryan, 2021b: Combined effects of midlevel dry air and vertical wind shear on tropical cyclone development. Part II: Radial ventilation. J. Atmos. Sci., 78, 783796, https://doi.org/10.1175/JAS-D-20-0055.1.

    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, and A. Hazelton, 2022: How do weak, misaligned tropical cyclones evolve toward alignment? A multi-case study using the Hurricane Analysis and Forecast System. J. Geophys. Res. Atmos., 127, e2022JD037268, https://doi.org/10.1029/2022JD037268.

    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, E. Zipser, and J. Zawislak, 2020: How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution ensemble study. J. Atmos. Sci., 77, 13291351, https://doi.org/10.1175/JAS-D-18-0355.1.

    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, M. Fischer, P. Reasor, J. Zawislak, and R. Rogers, 2022: Observed processes underlying the favorable vortex repositioning early in the development of Hurricane Dorian (2019). Mon. Wea. Rev., 150, 193213, https://doi.org/10.1175/MWR-D-21-0069.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., C. W. Landsea, and Y.-L. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, https://doi.org/10.1175/WAF-D-13-00092.1.

    • Search Google Scholar
    • Export Citation
  • Chen, H., and S. G. Gopalakrishnan, 2015: A study on the asymmetric rapid intensification of Hurricane Earl (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., Y. Wang, J. Fang, and M. Xue, 2018: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part II: Roles of inner-core processes. J. Atmos. Sci., 75, 235255, https://doi.org/10.1175/JAS-D-17-0129.1.

    • Search Google Scholar
    • Export Citation
  • Chen, X., J. A. Zhang, and F. D. Marks, 2019: A thermodynamic pathway leading to rapid intensification of tropical cyclones in shear. Geophys. Res. Lett., 46, 92419251, https://doi.org/10.1029/2019GL083667.

    • Search Google Scholar
    • Export Citation
  • Chen, X., J.-F. Gu, J. A. Zhang, F. D. Marks, R. F. Rogers, and J. J. Cione, 2021: Boundary layer recovery and precipitation symmetrization preceding rapid intensification of tropical cyclones under shear. J. Atmos. Sci., 78, 15231544, https://doi.org/10.1175/JAS-D-20-0252.1.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and M. J. Suarez, 1999: A Solar radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-1999-104606/Vol. 15, 38 pp., https://ntrs.nasa.gov/citations/19990060930.

  • Chou, M.-D., M. J. Suarez, X.-Z. Liang, M. M.-H. Yan, and C. Cote, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo. NASA/TM-2001-104606/Vol. 19, 68 pp., https://ntrs.nasa.gov/search.jsp?R=20010072848.

  • Črnivec, N., R. K. Smith, and G. Kilroy, 2016: Dependence of tropical cyclone intensification rate on sea-surface temperature. Quart. J. Roy. Meteor. Soc., 142, 16181627, https://doi.org/10.1002/qj.2752.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., 1996: The effect of vertical shear on tropical cyclone intensity change. J. Atmos. Sci., 53, 20762088, https://doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dolling, K., and G. M. Barnes, 2012: Warm-core formation in tropical storm Humberto (2001). Mon. Wea. Rev., 140, 11771190, https://doi.org/10.1175/MWR-D-11-00183.1.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, https://doi.org/10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115, https://doi.org/10.1175/JAS3889.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and R. Rotunno, 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, https://doi.org/10.1175/JAS-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air sea interaction theory for tropical cyclones. Part I: Steady state maintenance. J. Atmos. Sci., 43, 585605, https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Finocchio, P. M., S. J. Majumdar, D. S. Nolan, and M. Iskandarani, 2016: Idealized tropical cyclone responses to the height and depth of environmental vertical wind shear. Mon. Wea. Rev., 144, 21552175, https://doi.org/10.1175/MWR-D-15-0320.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, 2018: Normalized convective characteristics of tropical cyclone rapid intensification events in the North Atlantic and eastern North Pacific. Mon. Wea. Rev., 146, 11331155, https://doi.org/10.1175/MWR-D-17-0239.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., P. D. Reasor, B. H. Tang, K. L. Corbosiero, R. D. Torn, and X. Chen, 2023: A tale of two vortex evolutions: Using a high-resolution ensemble to assess the impacts of ventilation on a tropical cyclone rapid intensification event. Mon. Wea. Rev., 151, 297320, https://doi.org/10.1175/MWR-D-22-0037.1.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., R. F. Rogers, P. D. Reasor, and J. P. Dunion, 2024: An observational analysis of the relationship between tropical cyclone vortex tilt, precipitation structure, and intensity change. Mon. Wea. Rev., 152, 203225, https://doi.org/10.1175/MWR-D-23-0089.1.

    • Search Google Scholar
    • Export Citation
  • Gallina, G. M., and C. S. Velden, 2002: Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite derived wind information. Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 3C.5., https://ams.confex.com/ams/25HURR/techprogram/paper_35650.htm.

  • Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and midlevel dry air on tropical cyclone developments. J. Atmos. Sci., 70, 38593875, https://doi.org/10.1175/JAS-D-13-066.1.

    • Search Google Scholar
    • Export Citation
  • Gu, J.-F., Z.-M. Tan, and X. Qiu, 2019: Intensification variability of tropical cyclones in directional shear flows: Vortex tilt–convection coupling. J. Atmos. Sci., 76, 18271844, https://doi.org/10.1175/JAS-D-18-0282.1.

    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2011: Convective structure in rapidly intensifying tropical cyclones as depicted by passive microwave measurements. Geophys. Res. Lett., 38, L07805, https://doi.org/10.1029/2011GL047010.

    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2016a: Varied pathways for simulated tropical cyclone rapid intensification. Part I: Precipitation and environment. Quart. J. Roy. Meteor. Soc., 142, 18161831, https://doi.org/10.1002/qj.2780.

    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2016b: Varied pathways for simulated tropical cyclone rapid intensification. Part II: Vertical motion and cloud populations. Quart. J. Roy. Meteor. Soc., 142, 18321846, https://doi.org/10.1002/qj.2778.

    • Search Google Scholar
    • Export Citation
  • Harnos, D. S., and S. W. Nesbitt, 2016c: Passive microwave quantification of tropical cyclone inner-core cloud populations relative to subsequent intensity change. Mon. Wea. Rev., 144, 44614482, https://doi.org/10.1175/MWR-D-15-0090.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, https://doi.org/10.1175/2010MWR3185.1.

    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034, https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and P. M. Markowski, 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, https://doi.org/10.1175/2009MWR3018.1.

    • Search Google Scholar
    • Export Citation
  • Jones, S. C., 1995: The evolution of vortices in vertical shear. I: Initially barotropic vortices. Quart. J. Roy. Meteor. Soc., 121, 821851, https://doi.org/10.1002/qj.49712152406.

    • Search Google Scholar
    • Export Citation
  • Judt, F., R. Rios-Berrios, and G. H. Bryan, 2023: Marathon versus sprint: Two modes of tropical cyclone rapid intensification in a global convection-permitting simulation. Mon. Wea. Rev., 151, 26832699, https://doi.org/10.1175/MWR-D-23-0038.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kieper, M. E., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, https://doi.org/10.1029/2012GL052115.

    • Search Google Scholar
    • Export Citation
  • Kilroy, G., and R. K. Smith, 2013: A numerical study of rotating convection during tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 139, 12551269, https://doi.org/10.1002/qj.2022.

    • Search Google Scholar
    • Export Citation
  • Li, Y., Y. Tang, R. Toumi, and S. Wang, 2022: Revisiting the definition of rapid intensification of tropical cyclones by clustering the initial intensity and inner-core size. J. Geophys. Res. Atmos., 127, e2022JD036870, https://doi.org/10.1029/2022JD036870.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., M. Zhao, and M. Zhang, 2015: Tropical cyclone rainfall area controlled by relative sea surface temperature. Nat. Commun., 6, 6591, https://doi.org/10.1038/ncomms7591.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and D. S. Nolan, 2018: Structural changes preceding rapid intensification in tropical cyclones as shown in a large ensemble of idealized simulations. J. Atmos. Sci., 75, 555569, https://doi.org/10.1175/JAS-D-17-0177.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, https://doi.org/10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., D. Vollaro, and K. L. Corbosiero, 2004: Tropical cyclone formation in a sheared environment: A case study. J. Atmos. Sci., 61, 24932509, https://doi.org/10.1175/JAS3291.1.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteor. Ocean J., 64, 3766, https://doi.org/10.22499/2.6401.005.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes. Mon. Wea. Rev., 137, 9911007, https://doi.org/10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Munsell, E. B., F. Zhang, J. A. Sippel, S. A. Braun, and Y. Weng, 2017: Dynamics and predictability of the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 573595, https://doi.org/10.1175/JAS-D-16-0018.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., and J. Molinari, 2015: Simulation of the downshear reformation of a tropical cyclone. J. Atmos. Sci., 72, 45294551, https://doi.org/10.1175/JAS-D-15-0036.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T., R. F. Rogers, and P. D. Reasor, 2017: Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 44234446, https://doi.org/10.1175/MWR-D-17-0073.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2011: Evaluating environmental favorableness for tropical cyclone development with the method of point-downscaling. J. Adv. Model. Earth Syst., 3, M08001, https://doi.org/10.1029/2011MS000063.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., S. Nebylitsa, B. D. McNoldy, and S. J. Majumdar, 2024: Modulation of tropical cyclone rapid intensification by mesoscale asymmetries. Quart. J. Roy. Meteor. Soc., 150, 388415, https://doi.org/10.1002/qj.4602.

    • Search Google Scholar
    • Export Citation
  • Onderlinde, M. J., and D. S. Nolan, 2016: Tropical cyclone–relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869890, https://doi.org/10.1175/JAS-D-15-0261.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Search Google Scholar
    • Export Citation
  • Rappin, E. D., and D. S. Nolan, 2012: The effect of vertical shear orientation on tropical cyclogenesis. Quart. J. Roy. Meteor. Soc., 138, 10351054, https://doi.org/10.1002/qj.977.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., and M. T. Montgomery, 2001: Three-dimensional alignment and co-rotation of weak, TC-like vortices via linear vortex-Rossby-waves. J. Atmos. Sci., 58, 23062330, https://doi.org/10.1175/1520-0469(2001)058<2306:TDAACO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, and L. D. Grasso, 2004: A new look at the problem of tropical cyclones in shear flow: Vortex resiliency. J. Atmos. Sci., 61, 322, https://doi.org/10.1175/1520-0469(2004)061<0003:ANLATP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., and F. Laliberté, 2015: Secondary circulation of tropical cyclones in vertical wind shear: Lagrangian diagnostic and pathways of environmental interaction. J. Atmos. Sci., 72, 35173536, https://doi.org/10.1175/JAS-D-14-0350.1.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2010: A new paradigm for intensity modification of tropical cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. Atmos. Chem. Phys., 10, 31633188, https://doi.org/10.5194/acp-10-3163-2010.

    • Search Google Scholar
    • Export Citation
  • Riemer, M., M. T. Montgomery, and M. E. Nicholls, 2013: Further examination of the thermodynamic modification of the inflow layer of tropical cyclones by vertical wind shear. Atmos. Chem. Phys., 13, 327346, https://doi.org/10.5194/acp-13-327-2013.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., 2020: Impacts of radiation and cold pools on the intensity and vortex tilt of weak tropical cyclones interacting with vertical wind shear. J. Atmos. Sci., 77, 669689, https://doi.org/10.1175/JAS-D-19-0159.1.

    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R., C. A. Davis, and R. D. Torn, 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. F., P. D. Reasor, J. A. Zawislak, and L. T. Nguyen, 2020: Precipitation processes and vortex alignment during the intensification of a weak tropical cyclone in moderate vertical shear. Mon. Wea. Rev., 148, 18991929, https://doi.org/10.1175/MWR-D-19-0315.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018a: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 37733800, https://doi.org/10.1175/MWR-D-18-0020.1.

    • Search Google Scholar
    • Export Citation
  • Ryglicki, D. R., J. D. Doyle, Y. Jin, D. Hodyss, and J. H. Cossuth, 2018b: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part II: Vortex tilt. Mon. Wea. Rev., 146, 38013825, https://doi.org/10.1175/MWR-D-18-0021.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2016: Development and nondevelopment of binary mesoscale vortices into tropical cyclones in idealized numerical experiments. J. Atmos. Sci., 73, 12231254, https://doi.org/10.1175/JAS-D-15-0028.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2020: Distinct intensification pathways for a shallow-water vortex subjected to asymmetric “diabatic” forcing. Dyn. Atmos. Oceans, 91, 101156, https://doi.org/10.1016/j.dynatmoce.2020.101156.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2022: Intensification of tilted tropical cyclones over relatively cool and warm oceans in idealized numerical simulations. J. Atmos. Sci., 79, 485512, https://doi.org/10.1175/JAS-D-21-0051.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., 2023: Intensification rates of tropical cyclone–like vortices in a model with downtilt diabatic forcing and oceanic surface drag. J. Atmos. Sci., 80, 17871814, https://doi.org/10.1175/JAS-D-22-0188.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2003: On the symmetrization rate of an intense geophysical vortex. Dyn. Atmos. Oceans, 37, 5588, https://doi.org/10.1016/S0377-0265(03)00015-0.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and M. T. Montgomery, 2007: Waves in a cloudy vortex. J. Atmos. Sci., 64, 314337, https://doi.org/10.1175/JAS3849.1.

    • Search Google Scholar
    • Export Citation
  • Schecter, D. A., and K. Menelaou, 2020: Development of a misaligned tropical cyclone. J. Atmos. Sci., 77, 79111, https://doi.org/10.1175/JAS-D-19-0074.1.

    • Search Google Scholar
    • Export Citation
  • Stevenson, S. N., K. L. Corbosiero, and J. Molinari, 2014: The convective evolution and rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 142, 43644380, https://doi.org/10.1175/MWR-D-14-00078.1.

    • Search Google Scholar
    • Export Citation
  • Stone, Ž., G. R. Alvey III, J. P. Dunion, M. S. Fischer, D. J. Raymond, R. F. Rogers, S. Sentić, and J. Zawislak, 2023: Thermodynamic contribution to vortex alignment and rapid intensification of Hurricane Sally (2020). Mon. Wea. Rev., 151, 931951, https://doi.org/10.1175/MWR-D-22-0201.1.

    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. F. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, https://doi.org/10.1175/MWR-D-14-00283.1.

    • Search Google Scholar
    • Export Citation
  • Tang, B., and K. Emanuel, 2012: A ventilation index for tropical cyclones. Bull. Amer. Meteor. Soc., 93, 19011912, https://doi.org/10.1175/BAMS-D-11-00165.1.

    • Search Google Scholar
    • Export Citation
  • Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 87918824, https://doi.org/10.1175/JCLI-D-14-00448.1.

    • Search Google Scholar
    • Export Citation
  • Tao, C., H. Jiang, and J. Zawislak, 2017: The relative importance of stratiform and convective rainfall in rapidly intensifying tropical cyclones. Mon. Wea. Rev., 145, 795809, https://doi.org/10.1175/MWR-D-16-0316.1.

    • Search Google Scholar
    • Export Citation
  • Tao, D., and F. Zhang, 2014: Effect of environmental shear, sea-surface temperature, and ambient moisture on the formation and predictability of tropical cyclones: An ensemble-mean perspective. J. Adv. Model. Earth Syst., 6, 384404, https://doi.org/10.1002/2014MS000314.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Y. Li, and J. Xu, 2021: A new time-dependent theory of tropical cyclone intensification. J. Atmos. Sci., 78, 38553865, https://doi.org/10.1175/JAS-D-21-0169.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692701, https://doi.org/10.1175/WAF-D-14-00141.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea. Forecasting, 33, 523537, https://doi.org/10.1175/WAF-D-17-0095.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., Y. Wang, and Z.-M. Tan, 2016: The relationship between sea surface temperature and maximum intensification rate of tropical cyclones in the North Atlantic. J. Atmos. Sci., 73, 49794988, https://doi.org/10.1175/JAS-D-16-0164.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J., Y. Wang, and C. Yang, 2019: Interbasin differences in the median and variability of tropical cyclone MPI in the Northern Hemisphere. J. Geophys. Res. Atmos., 124, 13 71413 730, https://doi.org/10.1029/2019JD031588.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J., H. Jiang, G. R. Alvey III, E. J. Zipser, R. F. Rogers, J. A. Zhang, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., and D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 442 442 275
Full Text Views 117 117 51
PDF Downloads 134 134 58