A Note on the Relation between the Cold-V Brightness Temperature Feature and the Above-Anvil Cirrus

Ziling Liang Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Ziling Liang in
Current site
Google Scholar
PubMed
Close
and
Yi Huang Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Yi Huang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Severe convective storms, including supercell thunderstorms, are known to produce distinctive features in satellite imagery, one of which is the cold (enhanced) “V” brightness temperature anomaly pattern. This feature is frequently used by weather forecasters to aid severe weather warnings and is often attributed to the above-anvil cirrus (AAC). However, multiple explanations of the cold-V feature have been proposed, and its relation to AAC continues to be debated. This note aims to clarify their relation, by using the satellite images synthesized from the high-resolution simulation of overshooting convective storms by the Global Environmental Multiscale model combined with the Moderate Spectral Resolution Transmittance radiative transfer model. It is found that most of the AAC are optically too thin to create the cold-V temperature contrast in the brightness temperature field. As the cloud body that contributes the most to satellite-measured radiance locates at the effective emission level, the cloud temperature at this level is found to best explain the brightness temperature features, with a spatial correlation generally exceeding 0.80. Therefore, the temperature inhomogeneity inside the anvil cloud, as opposed to the AAC, is found to be the cause of the cold-V feature. This finding cautions against the notion of a causality relation between the AAC and the cold-V feature and suggests they should be considered as separate evidence in interpreting the satellite images for severe weather forecasts.

Significance Statement

The cold-V feature in infrared satellite imagery is an important indicator used for severe weather warnings. It was believed that this pattern is caused by specific high-altitude clouds known as the above-anvil cirrus. However, our study suggests otherwise. We found that the variations in temperature within the main body of the anvil cloud, not the above-anvil cirrus, are actually responsible for this pattern. This is important because it changes how meteorologists interpret satellite images, potentially leading to more accurate weather forecasts. Our findings encourage further research into understanding cloud temperatures and their impact on weather prediction, which is vital for public safety and preparedness for extreme weather.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ziling Liang, ziling.liang@mail.mcgill.ca; Yi Huang, yi.huang@mcgill.ca

Abstract

Severe convective storms, including supercell thunderstorms, are known to produce distinctive features in satellite imagery, one of which is the cold (enhanced) “V” brightness temperature anomaly pattern. This feature is frequently used by weather forecasters to aid severe weather warnings and is often attributed to the above-anvil cirrus (AAC). However, multiple explanations of the cold-V feature have been proposed, and its relation to AAC continues to be debated. This note aims to clarify their relation, by using the satellite images synthesized from the high-resolution simulation of overshooting convective storms by the Global Environmental Multiscale model combined with the Moderate Spectral Resolution Transmittance radiative transfer model. It is found that most of the AAC are optically too thin to create the cold-V temperature contrast in the brightness temperature field. As the cloud body that contributes the most to satellite-measured radiance locates at the effective emission level, the cloud temperature at this level is found to best explain the brightness temperature features, with a spatial correlation generally exceeding 0.80. Therefore, the temperature inhomogeneity inside the anvil cloud, as opposed to the AAC, is found to be the cause of the cold-V feature. This finding cautions against the notion of a causality relation between the AAC and the cold-V feature and suggests they should be considered as separate evidence in interpreting the satellite images for severe weather forecasts.

Significance Statement

The cold-V feature in infrared satellite imagery is an important indicator used for severe weather warnings. It was believed that this pattern is caused by specific high-altitude clouds known as the above-anvil cirrus. However, our study suggests otherwise. We found that the variations in temperature within the main body of the anvil cloud, not the above-anvil cirrus, are actually responsible for this pattern. This is important because it changes how meteorologists interpret satellite images, potentially leading to more accurate weather forecasts. Our findings encourage further research into understanding cloud temperatures and their impact on weather prediction, which is vital for public safety and preparedness for extreme weather.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Ziling Liang, ziling.liang@mail.mcgill.ca; Yi Huang, yi.huang@mcgill.ca

Supplementary Materials

    • Supplemental Materials (ZIP 24.932 MB)
Save
  • Adler, R. F., and R. A. Mack, 1986: Thunderstorm cloud top dynamics as inferred from satellite observations and a cloud top parcel model. J. Atmos. Sci., 43, 19451960, https://doi.org/10.1175/1520-0469(1986)043<1945:TCTDAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., D. D. Fenn, and D. A. Moore, 1981: Spiral feature observed at top of rotating thunderstorm. Mon. Wea. Rev., 109, 11241129, https://doi.org/10.1175/1520-0493(1981)109<1124:SFOATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., M. J. Markus, and D. D. Fenn, 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113, 769781, https://doi.org/10.1175/1520-0493(1985)113<0769:DOSMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, https://doi.org/10.1126/science.1222978.

    • Search Google Scholar
    • Export Citation
  • Banerjee, A., G. Chiodo, M. Previdi, M. Ponater, A. J. Conley, and L. M. Polvani, 2019: Stratospheric water vapor: An important climate feedback. Climate Dyn., 53, 16971710, https://doi.org/10.1007/s00382-019-04721-4.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, https://doi.org/10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., E. M. Murillo, C. R. Homeyer, B. Scarino, and H. Mersiovsky, 2018: The above-anvil cirrus plume: An important severe weather indicator in visible and infrared satellite imagery. Wea. Forecasting, 33, 11591181, https://doi.org/10.1175/WAF-D-18-0040.1.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., J. Mailhot, C. Girard, and P. Vaillancourt, 2005: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133, 19381960, https://doi.org/10.1175/MWR2958.1.

    • Search Google Scholar
    • Export Citation
  • Berk, A., P. Conforti, R. Kennett, T. Perkins, F. Hawes, and J. Van Den Bosch, 2014: MODTRAN 6: A major upgrade of the MODTRAN radiative transfer code. 2014 Sixth Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lausanne, Switzerland, Institute of Electrical and Electronics Engineers, 1–4, https://doi.org/10.1109/WHISPERS.2014.8077573.

  • Brunner, J. C., S. A. Ackerman, A. S. Bachmeier, and R. M. Rabin, 2007: A quantitative analysis of the enhanced-V feature in relation to severe weather. Wea. Forecasting, 22, 853872, https://doi.org/10.1175/WAF1022.1.

    • Search Google Scholar
    • Export Citation
  • Cheng, K.-Y., 2018: A quantitative analysis of satellite-observable storm top infrared features. Ph.D. thesis, University of Wisconsin–Madison, 18 pp.

  • Cintineo, J. L., M. J. Pavolonis, J. M. Sieglaff, A. Wimmers, J. Brunner, and W. Bellon, 2020: A deep-learning model for automated detection of intense midlatitude convection using geostationary satellite images. Wea. Forecasting, 35, 25672588, https://doi.org/10.1175/WAF-D-20-0028.1.

    • Search Google Scholar
    • Export Citation
  • Côté, J., S. Gravel, A. Méthot, A. Patoine, M. Roch, and A. Staniforth, 1998: The operational CMC–MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., C. M. Johanson, J. M. Wallace, and T. Reichler, 2006: Enhanced mid-latitude tropospheric warming in satellite measurements. Science, 312, 1179, https://doi.org/10.1126/science.1125566.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1972: Tornado occurrences related to overshooting cloud-top heights as determined from ATS pictures. Tech. Rep., 37 pp., https://ntrs.nasa.gov/api/citations/19730013840/downloads/19730013840.pdf.

  • Fujita, T. T., 1974: Overshooting thunderheads observed from ATS and Learjet. Tech. Rep., 34 pp., https://ntrs.nasa.gov/api/citations/19740018973/downloads/19740018973.pdf.

  • Fujita, T. T., 1982: Principle of stereoscopic height computations and their applications to stratospheric cirrus over severe thunderstorms. J. Meteor. Soc. Japan, 60, 355368, https://doi.org/10.2151/jmsj1965.60.1_355.

    • Search Google Scholar
    • Export Citation
  • Girard, C., and Coauthors, 2014: Staggered vertical discretization of the Canadian Environmental Multiscale (GEM) model using a coordinate of the log-hydrostatic-pressure type. Mon. Wea. Rev., 142, 11831196, https://doi.org/10.1175/MWR-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Goody, R. M., and Y. L. Yung, 1989: Atmospheric Radiation: Theoretical Basis. Oxford University Press, 519 pp.

  • Hassim, M. E. E., and T. P. Lane, 2010: A model study on the influence of overshooting convection on TTL water vapour. Atmos. Chem. Phys., 10, 98339849, https://doi.org/10.5194/acp-10-9833-2010.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., R. H. Blackmer Jr., and S. Schotz, 1983a: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. I: Radar and satellite observations. J. Atmos. Sci., 40, 17401755, https://doi.org/10.1175/1520-0469(1983)040<1740:ULSOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., G. Szejwach, S. Schotz, and R. H. Blackmer Jr., 1983b: Upper-level structure of Oklahoma tornadic storms on 2 May 1979. II: Proposed explanation of “V” pattern and internal warm region in infrared observations. J. Atmos. Sci., 40, 17561767, https://doi.org/10.1175/1520-0469(1983)040<1756:ULSOOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and R. H. Blackmer Jr., 1988: Satellite-observed characteristics of midwest severe thunderstorm anvils. Mon. Wea. Rev., 116, 22002224, https://doi.org/10.1175/1520-0493(1988)116<2200:SOCOMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, https://doi.org/10.1175/JAS-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., 2015: Numerical simulations of extratropical tropopause-penetrating convection: Sensitivities to grid resolution. J. Geophys. Res. Atmos., 120, 71747188, https://doi.org/10.1002/2015JD023356.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., L. L. Pan, and M. C. Barth, 2014: Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratosphere stability. J. Geophys. Res. Atmos., 119, 22202240, https://doi.org/10.1002/2013JD020931.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., J. D. McAuliffe, and K. M. Bedka, 2017: On the development of above-anvil cirrus plumes in extratropical convection. J. Atmos. Sci., 74, 16171633, https://doi.org/10.1175/JAS-D-16-0269.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., and M. Bani Shahabadi, 2014: Why logarithmic? A note on the dependence of radiative forcing on gas concentration. J. Geophys. Res. Atmos., 119, 13 68313 689, https://doi.org/10.1002/2014JD022466.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., M. Zhang, Y. Xia, Y. Hu, and S.-W. Son, 2016: Is there a stratospheric radiative feedback in global warming simulations? Climate Dyn., 46, 177186, https://doi.org/10.1007/s00382-015-2577-2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., Y. Wang, and H. Huang, 2020: Stratospheric water vapor feedback disclosed by a locking experiment. Geophys. Res. Lett., 47, e2020GL087987, https://doi.org/10.1029/2020GL087987.

    • Search Google Scholar
    • Export Citation
  • Iwasaki, S., Z. J. Luo, H. Kubota, T. Shibata, H. Okamoto, and H. Ishimoto, 2015: Characteristics of cirrus clouds in the tropical lower stratosphere. Atmos. Res., 164–165, 358368, https://doi.org/10.1016/j.atmosres.2015.06.009.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., and R. D. Sharman, 2006: Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett., 33, L23813, https://doi.org/10.1029/2006GL027988.

    • Search Google Scholar
    • Export Citation
  • Li, F., and P. Newman, 2020: Stratospheric water vapor feedback and its climate impacts in the coupled atmosphere–ocean Goddard Earth observing system Chemistry-Climate model. Climate Dyn., 55, 15851595, https://doi.org/10.1007/s00382-020-05348-6.

    • Search Google Scholar
    • Export Citation
  • Liang, Z., and Y. Huang, 2024: Dataset and scripts for a note on the relation between the cold-V brightness temperature feature and the above anvil cirrus. Zenodo, accessed 26 May 2024, https://doi.org/10.5281/zenodo.11317273.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., 1986: Calculation of airflow over an isolated heat source with application to the dynamics of V-shaped clouds. J. Atmos. Sci., 43, 27362751, https://doi.org/10.1175/1520-0469(1986)043<2736:COAOAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, https://doi.org/10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McClatchey, R. A., 1972: Optical properties of the atmosphere. AFCRL Office of Aerospace Research, United States Air Force Tech. Rep. 411, 113 pp.

  • Milbrandt, J. A., and M. K. Yau, 2005a: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, https://doi.org/10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005b: A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci., 62, 30653081, https://doi.org/10.1175/JAS3535.1.

    • Search Google Scholar
    • Export Citation
  • Murillo, E. M., and C. R. Homeyer, 2022: What determines above-anvil cirrus plume infrared temperature? J. Atmos. Sci., 79, 31813194, https://doi.org/10.1175/JAS-D-22-0080.1.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornadic storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 11511159, https://doi.org/10.1175/1520-0477-63.10.1151.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., and R. F. Adler, 1981: Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J. Appl. Meteor., 20, 288300, https://doi.org/10.1175/1520-0450(1981)020<0288:ROSBTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, M. E., L. Orf, G. M. Heymsfield, and K. Halbert, 2021: Hydraulic jump dynamics above supercell thunderstorms. Science, 373, 12481251, https://doi.org/10.1126/science.abh3857.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., and Coauthors, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett., 41, 77857790, https://doi.org/10.1002/2014GL061921.

    • Search Google Scholar
    • Export Citation
  • Qu, Z., Y. Huang, P. A. Vaillancourt, J. N. S. Cole, J. A. Milbrandt, M.-K. Yau, K. Walker, and J. De Grandpré, 2020: Simulation of convective moistening of the extratropical lower stratosphere using a numerical weather prediction model. Atmos. Chem. Phys., 20, 21432159, https://doi.org/10.5194/acp-20-2143-2020.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., 1980: Observations of damaging hailstorms from geosynchronous satellite digital data. Mon. Wea. Rev., 108, 337348, https://doi.org/https://doi.org/10.1175/1520-0493(1980)108<0337:OODHFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., and Coauthors, 2010: Satellite-observed cold-ring-shaped features atop deep convective clouds. Atmos. Res., 97, 8096, https://doi.org/10.1016/j.atmosres.2010.03.009.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charvát, J. Šťástka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, https://doi.org/10.1016/j.atmosres.2012.06.020.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., and Y. Huang, 2015: An examination of convective moistening of the lower stratosphere using satellite data. Earth Space Sci., 2, 320330, https://doi.org/10.1002/2015EA000115.

    • Search Google Scholar
    • Export Citation
  • Thiel, K. C., K. M. Calhoun, A. E. Reinhart, and D. R. MacGorman, 2020: GLM and ABI characteristics of severe and convective storms. J. Geophys. Res. Atmos., 125, e2020JD032858, https://doi.org/10.1029/2020JD032858.

    • Search Google Scholar
    • Export Citation
  • Ueyama, R., M. Schoeberl, E. Jensen, L. Pfister, M. Park, and J.-M. Ryoo, 2023: Convective impact on the global lower stratospheric water vapor budget. J. Geophys. Res. Atmos., 128, e2022JD037135, https://doi.org/10.1029/2022JD037135.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Z. J. Luo, X. Chen, X. Zeng, W.-K. Tao, and X. Huang, 2014: A physically based algorithm for non-blackbody correction of cloud-top temperature and application to convection study. J. Appl. Meteor. Climatol., 53, 18441857, https://doi.org/10.1175/JAMC-D-13-0331.1.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, https://doi.org/10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2004: A cloud model interpretation of jumping cirrus above storm top. Geophys. Res. Lett., 31, L18106, https://doi.org/10.1029/2004GL020787.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2007: The thermodynamic structure atop a penetrating convective thunderstorm. Atmos. Res., 83, 254262, https://doi.org/10.1016/j.atmosres.2005.08.010.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., M. Setvák, W. Lyons, W. Schmid, and H.-M. Lin, 2009: Further evidences of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94, 400408, https://doi.org/10.1016/j.atmosres.2009.06.018.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., S.-H. Su, Z. Charvát, J. Štástka, and H.-M. Lin, 2011: Cross tropopause transport of water by mid-latitude deep convective storms: A review. Terr. Atmos. Oceanic Sci., 22, 447, https://doi.org/10.3319/TAO.2011.06.13.01(A).

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., K.-Y. Cheng, M. Setvak, and C.-K. Wang, 2016: The origin of the gullwing-shaped cirrus above an Argentinian thunderstorm as seen in CALIPSO images. J. Geophys. Res. Atmos., 121, 37293738, https://doi.org/10.1002/2015JD024111.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., Y.-L. Chou, and D. Lindsey, 2023: WRF modeling of the UTLS region of the July 29 2016 summer monsoon storms in China and comparison with aircraft and satellite observations. EGU General Assembly 2023, Vienna, Austria, EGU23-12557, https://doi.org/10.5194/egusphere-egu23-12557.

  • Wang, X., Y. Huang, Z. Qu, P. A. Vaillancourt, M.-K. Yau, J. Feng, J. Langille, and A. Bourassa, 2023: Convectively transported water vapor plumes in the midlatitude lower stratosphere. J. Geophys. Res. Atmos., 128, e2022JD037699, https://doi.org/10.1029/2022JD037699.

    • Search Google Scholar
    • Export Citation
  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., 4, 134138.

  • Yang, P., L. Bi, B. A. Baum, K.-N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5524 5524 681
Full Text Views 133 133 38
PDF Downloads 97 97 39