Mean Cold Pool Size of Quasi-Equilibrium Convection. Part I: Why Do Cold Pools Collide?

Hao Fu Department of Earth System Science, Stanford University, Stanford, California
Department of the Geophysical Sciences, The University of Chicago, Chicago, Illinois

Search for other papers by Hao Fu in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-9524-0001
and
Morgan E O’Neill Department of Earth System Science, Stanford University, Stanford, California
Department of Physics, University of Toronto, Toronto, Ontario, Canada

Search for other papers by Morgan E O’Neill in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation-driven cold pools play an important role in organizing tropical convection. Previous studies of tropical convection in the radiative–convective equilibrium (RCE) setup found that cold pools tend to collide with each other and trigger new convection. It remains unclear why most cold pools do not have enough space to dissipate without collision. We explain it as the smaller mean cold pool radius Req compared to its maximum potential radius Rmax. The latter denotes the radius needed for a cold pool’s buoyancy deficit to be dissipated by surface heating. Applying an energy balance constraint leads to an analytical solution for their ratio Rmax/Req, which depends on the Bowen ratio, surface precipitation–evaporation ratio, and rain sedimentation efficiency. The theory predicts that in the regime of marine tropical convection where the Bowen ratio is much smaller than one, Req cannot reach Rmax, and cold pools must collide frequently. This prediction is supported by large-eddy simulations using varying rain evaporation rates. In Part II, we combine the energy balance constraint with a convective life cycle model to obtain a theory of the mean cold pool radius Req.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hao Fu, haofu736@gmail.com

Abstract

Precipitation-driven cold pools play an important role in organizing tropical convection. Previous studies of tropical convection in the radiative–convective equilibrium (RCE) setup found that cold pools tend to collide with each other and trigger new convection. It remains unclear why most cold pools do not have enough space to dissipate without collision. We explain it as the smaller mean cold pool radius Req compared to its maximum potential radius Rmax. The latter denotes the radius needed for a cold pool’s buoyancy deficit to be dissipated by surface heating. Applying an energy balance constraint leads to an analytical solution for their ratio Rmax/Req, which depends on the Bowen ratio, surface precipitation–evaporation ratio, and rain sedimentation efficiency. The theory predicts that in the regime of marine tropical convection where the Bowen ratio is much smaller than one, Req cannot reach Rmax, and cold pools must collide frequently. This prediction is supported by large-eddy simulations using varying rain evaporation rates. In Part II, we combine the energy balance constraint with a convective life cycle model to obtain a theory of the mean cold pool radius Req.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Hao Fu, haofu736@gmail.com

Supplementary Materials

    • Supplemental Materials (PDF 2.4756 MB)
Save
  • Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, T. B., 1968: Gravity currents and related phenomena. J. Fluid Mech., 31, 209248, https://doi.org/10.1017/S0022112068000133.

    • Search Google Scholar
    • Export Citation
  • Böing, S. J., H. J. J. Jonker, A. P. Siebesma, and W. W. Grabowski, 2012: Influence of the subcloud layer on the development of a deep convective ensemble. J. Atmos. Sci., 69, 26822698, https://doi.org/10.1175/JAS-D-11-0317.1.

    • Search Google Scholar
    • Export Citation
  • Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev., 27, 779787, https://doi.org/10.1103/PhysRev.27.779.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., P. N. Blossey, and M. Khairoutdinov, 2005: An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci., 62, 42734292, https://doi.org/10.1175/JAS3614.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev., 130, 29172928, https://doi.org/10.1175/1520-0493(2002)130<2917:ABSFMN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, https://doi.org/10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and R. R. Braham, Jr., 1949: The Thunderstorm: Final Report of the Thunderstorm Project. U.S. Government Printing Office, 287 pp.

  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabara, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233244, https://doi.org/10.1016/j.jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, https://doi.org/10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1985: Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations. J. Atmos. Sci., 42, 23812403, https://doi.org/10.1175/1520-0469(1985)042<2381:TDNMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Falk, N. M., and S. C. van den Heever, 2023: Environmental modulation of mechanical and thermodynamic forcing from cold pool collisions. J. Atmos. Sci., 80, 375395, https://doi.org/10.1175/JAS-D-22-0020.1.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357381, https://doi.org/10.1002/2014MS000384.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., and R. A. Houze Jr., 1989: One-dimensional time-dependent modeling of gate cumulonimbus convection. J. Atmos. Sci., 46, 330352, https://doi.org/10.1175/1520-0469(1989)046<0330:ODTDMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fu, H., and M. E O’Neill, 2024: The small-amplitude dynamics of spontaneous tropical cyclogenesis. Part I: Experiments with amplified longwave radiative feedback. J. Atmos. Sci., 81, 381399, https://doi.org/10.1175/JAS-D-23-0170.1.

    • Search Google Scholar
    • Export Citation
  • Fu, H., and M. E O’Neill, 2025: Mean cold pool size of quasi-equilibrium convection. Part II: The survival competition hypothesis. J. Atmos. Sci., 82, 251265, https://doi.org/10.1175/JAS-D-24-0052.1.

    • Search Google Scholar
    • Export Citation
  • Fuglestvedt, H. F., and J. O. Haerter, 2020: Cold pools as conveyor belts of moisture. Geophys. Res. Lett., 47, e2020GL087319, https://doi.org/10.1029/2020GL087319.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. Garelli, S.-B. Park, J. Nie, G. Torri, and Z. Kuang, 2016: Role of surface heat fluxes underneath cold pools. Geophys. Res. Lett., 43, 874883, https://doi.org/10.1002/2015GL067262.

    • Search Google Scholar
    • Export Citation
  • Grandpeix, J.-Y., and J.-P. Lafore, 2010: A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. J. Atmos. Sci., 67, 881897, https://doi.org/10.1175/2009JAS3044.1.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., and S. C. van den Heever, 2016: Cold pool dissipation. J. Geophys. Res. Atmos., 121, 11381155, https://doi.org/10.1002/2015JD023813.

    • Search Google Scholar
    • Export Citation
  • Grant, L. D., T. P. Lane, and S. C. van den Heever, 2018: The role of cold pools in tropical oceanic convective systems. J. Atmos. Sci., 75, 26152634, https://doi.org/10.1175/JAS-D-17-0352.1.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., P. Berg, and C. Moseley, 2017: Precipitation onset as the temporal reference in convective self-organization. Geophys. Res. Lett., 44, 64506459, https://doi.org/10.1002/2017GL073342.

    • Search Google Scholar
    • Export Citation
  • Haerter, J. O., S. J. Böing, O. Henneberg, and S. B. Nissen, 2019: Circling in on convective organization. Geophys. Res. Lett., 46, 70247034, https://doi.org/10.1029/2019GL082092.

    • Search Google Scholar
    • Export Citation
  • Held, I. M., R. S. Hemler, and V. Ramaswamy, 1993: Radiative-convective equilibrium with explicit two-dimensional moist convection. J. Atmos. Sci., 50, 39093927, https://doi.org/10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jeevanjee, N., and D. M. Romps, 2013: Convective self-aggregation, cold pools, and domain size. Geophys. Res. Lett., 40, 994998, https://doi.org/10.1002/grl.50204.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P. A., J. Dudhia, J. F. González-Rouco, J. Navarro, J. P. Montávez, and E. García-Bustamante, 2012: A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev., 140, 898918, https://doi.org/10.1175/MWR-D-11-00056.1.

    • Search Google Scholar
    • Export Citation
  • Jo, Y.-H., X.-H. Yan, J. Pan, M.-X. He, and W. T. Liu, 2002: Calculation of the Bowen ratio in the tropical Pacific using sea surface temperature data. J. Geophys. Res., 107, 3134, https://doi.org/10.1029/2001JC001150.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., and D. M. Romps, 2015: The origin of water vapor rings in tropical oceanic cold pools. Geophys. Res. Lett., 42, 78257834, https://doi.org/10.1002/2015GL065623.

    • Search Google Scholar
    • Export Citation
  • Langhans, W., K. Yeo, and D. M. Romps, 2015: Lagrangian investigation of the precipitation efficiency of convective clouds. J. Atmos. Sci., 72, 10451062, https://doi.org/10.1175/JAS-D-14-0159.1.

    • Search Google Scholar
    • Export Citation
  • Lutsko, N. J., and T. W. Cronin, 2018: Increase in precipitation efficiency with surface warming in radiative-convective equilibrium. J. Adv. Model. Earth Syst., 10, 29923010, https://doi.org/10.1029/2018MS001482.

    • Search Google Scholar
    • Export Citation
  • Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atmos. Sci., 21, 361385, https://doi.org/10.1175/1520-0469(1964)021<0361:TEOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1997: Equilibrium vs. activation control of large-scale variations of tropical deep convection. The Physics and Parameterization of Moist Atmospheric Convection, Springer, 321–358.

  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535, https://doi.org/10.1175/1520-0469(2000)057<1515:CISSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meyer, B., and J. O. Haerter, 2020: Mechanical forcing of convection by cold pools: Collisions and energy scaling. J. Adv. Model. Earth Syst., 12, e2020MS002281, https://doi.org/10.1029/2020MS002281.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, https://doi.org/10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Nissen, S. B., and J. O. Haerter, 2021: Circling in on convective self-aggregation. J. Geophys. Res. Atmos., 126, e2021JD035331, https://doi.org/10.1029/2021JD035331.

    • Search Google Scholar
    • Export Citation
  • Ogura, Y., and T. Takahashi, 1971: Numerical simulation of the life cycle of a thunderstorm cell. Mon. Wea. Rev., 99, 895911, https://doi.org/10.1175/1520-0493(1971)099<0895:NSOTLC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parodi, A., and K. Emanuel, 2009: A theory for buoyancy and velocity scales in deep moist convection. J. Atmos. Sci., 66, 34493463, https://doi.org/10.1175/2009JAS3103.1.

    • Search Google Scholar
    • Export Citation
  • Peixóto, J. P., and A. H. Oort, 1984: Physics of climate. Rev. Mod. Phys., 56, 365429, https://doi.org/10.1103/RevModPhys.56.365.

  • Riehl, H., and J. S. Malkus, 1958: On the heat balance in the equatorial trough zone. Geophysica, 6, 503538.

  • Robe, F. R., and K. A. Emanuel, 1996: Moist convective scaling: Some inferences from three-dimensional cloud ensemble simulations. J. Atmos. Sci., 53, 32653275, https://doi.org/10.1175/1520-0469(1996)053<3265:MCSSIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2014a: An analytical model for tropical relative humidity. J. Climate, 27, 74327449, https://doi.org/10.1175/JCLI-D-14-00255.1.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., 2014b: Rayleigh damping in the free troposphere. J. Atmos. Sci., 71, 553565, https://doi.org/10.1175/JAS-D-13-062.1.

  • Romps, D. M., and N. Jeevanjee, 2016: On the sizes and lifetimes of cold pools. Quart. J. Roy. Meteor. Soc., 142, 15171527, https://doi.org/10.1002/qj.2754.

    • Search Google Scholar
    • Export Citation
  • Ross, A. N., A. M. Tompkins, and D. J. Parker, 2004: Simple models of the role of surface fluxes in convective cold pool evolution. J. Atmos. Sci., 61, 15821595, https://doi.org/10.1175/1520-0469(2004)061<1582:SMOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and G. Torri, 2023: The observed effects of cold pools on convection triggering and organization during DYNAMO/AMIE. J. Geophys. Res. Atmos., 128, e2023JD038635, https://doi.org/10.1029/2023JD038635.

    • Search Google Scholar
    • Export Citation
  • Schlemmer, L., and C. Hohenegger, 2014: The formation of wider and deeper clouds as a result of cold-pool dynamics. J. Atmos. Sci., 71, 28422858, https://doi.org/10.1175/JAS-D-13-0170.1.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. Randall, 2015: A numerical investigation of boundary layer quasi-equilibrium. Geophys. Res. Lett., 42, 550556, https://doi.org/10.1002/2014GL062649.

    • Search Google Scholar
    • Export Citation
  • Tompkins, A. M., 2001: Organization of tropical convection in low vertical wind shears: The role of cold pools. J. Atmos. Sci., 58, 16501672, https://doi.org/10.1175/1520-0469(2001)058<1650:OOTCIL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torri, G., and Z. Kuang, 2016: A Lagrangian study of precipitation-driven downdrafts. J. Atmos. Sci., 73, 839854, https://doi.org/10.1175/JAS-D-15-0222.1.

    • Search Google Scholar
    • Export Citation
  • Torri, G., and Z. Kuang, 2019: On cold pool collisions in tropical boundary layers. Geophys. Res. Lett., 46, 399407, https://doi.org/10.1029/2018GL080501.

    • Search Google Scholar
    • Export Citation
  • Torri, G., Z. Kuang, and Y. Tian, 2015: Mechanisms for convection triggering by cold pools. Geophys. Res. Lett., 42, 19431950, https://doi.org/10.1002/2015GL063227.

    • Search Google Scholar
    • Export Citation
  • Ungarish, M., 2009: An Introduction to Gravity Currents and Intrusions. 1st ed. CRC Press, 512 pp.

  • von Kármán, T., 1940: The engineer grapples with nonlinear problems. Bull. Amer. Math. Soc., 46, 615683, https://doi.org/10.1090/S0002-9904-1940-07266-0.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, https://doi.org/10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. A. Davis, and Y. Huang, 2019: Dynamics of lower-tropospheric vorticity in idealized simulations of tropical cyclone formation. J. Atmos. Sci., 76, 707727, https://doi.org/10.1175/JAS-D-18-0219.1.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., L. R. Leung, Z. Feng, F. Song, and X. Chen, 2021: A simple Lagrangian parcel model for the initiation of summertime mesoscale convective systems over the central United States. J. Atmos. Sci., 78, 35373558, https://doi.org/10.1175/JAS-D-21-0136.1.

    • Search Google Scholar
    • Export Citation
  • Yano, J.-I., and R. S. Plant, 2012: Convective quasi-equilibrium. Rev. Geophys., 50, RG4004, https://doi.org/10.1029/2011RG000378.

All Time Past Year Past 30 Days
Abstract Views 1374 1374 116
Full Text Views 504 504 325
PDF Downloads 262 262 89