On the MJO Phase Speed among Different Background Moisture and Zonal Wind Base States

Ahmed Shaaban Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Ahmed Shaaban in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-6524-3359
and
Paul Roundy Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

Search for other papers by Paul Roundy in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The variability of the phase speed of the Madden–Julian oscillation (MJO) is poorly understood. The authors assess how the phase speed of the convective signal of the MJO associates with the background states over eastern Africa and the Indian Ocean. Relaxation of the coupling between tropical modes and their circulation has been previously linked to faster propagation; for example, the MJO speeds up over the eastern Pacific where its convective signal decouples from the circulation. In contrast, our results show that fast MJO events happen to exist during periods of wetter background states (>90 days) from East Africa across the Indian Ocean, whereas slow MJO is associated with dry background states. We found that fast MJO exhibits strong active and inactive phases with a structure suggesting more hierarchical convection. Results indicate that the association of the phase speed of the MJO as seen in the integrated filtered moist static energy with its tendency is stronger than the association of the phase speed as observed in the dry static energy with its tendency which is consistent with the acceleration of the MJO during wet background states. Also, our results indicate that the MJO may be faster during periods of enhanced low-level moisture because these periods have anomalously weak upper-tropospheric easterly background winds, which reduce the westward advection of the MJO by the background easterly wind, resulting in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal wind overwhelms the deceleration associated with the moist-wave dynamics.

Significance Statement

This study shows that the Madden–Julian oscillation (MJO), which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly across eastern Africa and the Indian Ocean when the region is abnormally moist. The faster propagation does not appear to result from the higher moisture but instead from encountering weaker-than-normal upper-air winds from the east that tend to occur during moist periods.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ahmed Shaaban, alasheen@albany.edu

Abstract

The variability of the phase speed of the Madden–Julian oscillation (MJO) is poorly understood. The authors assess how the phase speed of the convective signal of the MJO associates with the background states over eastern Africa and the Indian Ocean. Relaxation of the coupling between tropical modes and their circulation has been previously linked to faster propagation; for example, the MJO speeds up over the eastern Pacific where its convective signal decouples from the circulation. In contrast, our results show that fast MJO events happen to exist during periods of wetter background states (>90 days) from East Africa across the Indian Ocean, whereas slow MJO is associated with dry background states. We found that fast MJO exhibits strong active and inactive phases with a structure suggesting more hierarchical convection. Results indicate that the association of the phase speed of the MJO as seen in the integrated filtered moist static energy with its tendency is stronger than the association of the phase speed as observed in the dry static energy with its tendency which is consistent with the acceleration of the MJO during wet background states. Also, our results indicate that the MJO may be faster during periods of enhanced low-level moisture because these periods have anomalously weak upper-tropospheric easterly background winds, which reduce the westward advection of the MJO by the background easterly wind, resulting in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal wind overwhelms the deceleration associated with the moist-wave dynamics.

Significance Statement

This study shows that the Madden–Julian oscillation (MJO), which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly across eastern Africa and the Indian Ocean when the region is abnormally moist. The faster propagation does not appear to result from the higher moisture but instead from encountering weaker-than-normal upper-air winds from the east that tend to occur during moist periods.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Ahmed Shaaban, alasheen@albany.edu
Save
  • Adames, À. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. J. Atmos. Sci., 73, 913941, https://doi.org/10.1175/JAS-D-15-0170.1.

    • Search Google Scholar
    • Export Citation
  • Andersen, J. A., and Z. Kuang, 2012: Moist static energy budget of MJO-like disturbances in the atmosphere of a zonally symmetric aquaplanet. J. Climate, 25, 27822804, https://doi.org/10.1175/JCLI-D-11-00168.1.

    • Search Google Scholar
    • Export Citation
  • Bantzer, C. H., and J. M. Wallace, 1996: Intraseasonal variability in tropical mean temperature and precipitation and their relation to the tropical 40–50 day oscillation. J. Atmos. Sci., 53, 30323045, https://doi.org/10.1175/1520-0469(1996)053%3C3032:IVITMT%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354, https://doi.org/10.1175/JAS3968.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1992: Synoptic-Dynamic Meteorology in Midlatitudes: Principles of Kinematics and Dynamics. Vol. 1, Synoptic-Dynamic Meteorology in Midlatitudes, Oxford University Press, 431 pp., https://books.google.com.eg/books?id=hrV1wgEACAAJ.

  • Chang, C.-P., and H. Lim, 1988: Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 17091720, https://doi.org/10.1175/1520-0469(1988)045%3C1709:KWCAPM%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G., and B. Wang, 2019: Dynamic moisture mode versus moisture mode in MJO dynamics: Importance of the wave feedback and boundary layer convergence feedback. Climate Dyn., 52, 51275143, https://doi.org/10.1007/s00382-018-4433-7.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., G. N. Kiladis, A. Denno, and T. M. Rickenbach, 2008: Vertical-mode decompositions of 2-day waves and the Madden–Julian oscillation. J. Atmos. Sci., 65, 813833, https://doi.org/10.1175/2007JAS2314.1.

    • Search Google Scholar
    • Export Citation
  • Hsu, P.-c., and T. Li, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian oscillation. J. Climate, 25, 49144931, https://doi.org/10.1175/JCLI-D-11-00310.1.

    • Search Google Scholar
    • Export Citation
  • Hu, F., and T. Li, 2022: Effect of vertical overturning circulation scale and moist static energy tendency on MJO phase speed. Atmos. Oceanic Sci. Lett., 15, 100150, https://doi.org/10.1016/j.aosl.2022.100150.

    • Search Google Scholar
    • Export Citation
  • Inoue, K., 2016: Moist static energy budget analysis over the tropical ocean. Ph.D. dissertation, University of Wisconsin–Madison, 182 pp.

  • Inoue, K., and L. Back, 2015: Column-integrated moist static energy budget analysis on various time scales during TOGA COARE. J. Atmos. Sci., 72, 18561871, https://doi.org/10.1175/JAS-D-14-0249.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, X., E. Maloney, and H. Su, 2020: Large-scale controls of propagation of the Madden-Julian Oscillation. npj Climate Atmos. Sci., 3, 29, https://doi.org/10.1038/s41612-020-00134-x.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809, https://doi.org/10.1175/JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, https://doi.org/10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating versus nonpropagating Madden–Julian oscillation events. J. Climate, 27, 111125, https://doi.org/10.1175/JCLI-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Li, T., C. Zhao, P.-c. Hsu, and T. Nasuno, 2015: MJO initiation processes over the tropical Indian Ocean during DYNAMO/CINDY2011. J. Climate, 28, 21212135, https://doi.org/10.1175/JCLI-D-14-00328.1.

    • Search Google Scholar
    • Export Citation
  • Liebmann, B., and C. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 12751277, https://doi.org/10.1175/1520-0477-77.6.1274.

    • Search Google Scholar
    • Export Citation
  • Ling, J., C. Zhang, S. Wang, and C. Li, 2017: A new interpretation of the ability of global models to simulate the MJO. Geophys. Res. Lett., 44, 57985806, https://doi.org/10.1002/2017GL073891.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., and S. N. Stechmann, 2009: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422, https://doi.org/10.1073/pnas.0903367106.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729, https://doi.org/10.1175/2008JCLI2542.1.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden–Julian Oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453, https://doi.org/10.1002/qj.224.

    • Search Google Scholar
    • Export Citation
  • Monteiro, J. M., Á. F. Adames, J. M. Wallace, and J. S. Sukhatme, 2014: Interpreting the upper level structure of the Madden-Julian oscillation. Proc. Natl. Acad. Sci. USA, 41, 91589165, https://doi.org/10.1002/2014GL062518.

    • Search Google Scholar
    • Export Citation
  • Powell, S. W., and R. A. Houze Jr., 2015: Effect of dry large-scale vertical motions on initial MJO convective onset. J. Geophys. Res. Atmos., 120, 47834805, https://doi.org/10.1002/2014JD022961.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2014: Some aspects of Western Hemisphere circulation and the Madden–Julian oscillation. J. Atmos. Sci., 71, 20272039, https://doi.org/10.1175/JAS-D-13-0210.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2017: Diagnosis of seasonally varying regression slope coefficients and application to the MJO. Quart. J. Roy. Meteor. Soc., 143, 19461952, https://doi.org/10.1002/qj.3054.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2020: Interpretation of the spectrum of eastward-moving tropical convective anomalies. Quart. J. Roy. Meteor. Soc., 146, 795806, https://doi.org/10.1002/qj.3709.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2022: Effect of advection by upper-tropospheric background zonal wind on MJO phase speed. J. Atmos. Sci., 79, 18591864, https://doi.org/10.1175/JAS-D-21-0298.1.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and C. J. Schreck III, 2009: A combined wave-number–frequency and time-extended EOF approach for tracking the progress of modes of large-scale organized tropical convection. Quart. J. Roy. Meteor. Soc., 135, 161173, https://doi.org/10.1002/qj.356.

    • Search Google Scholar
    • Export Citation
  • Rui, H., and B. Wang, 1990: Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357379, https://doi.org/10.1175/1520-0469(1990)047%3C0357:DCADSO%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakaeda, N., and P. E. Roundy, 2015: The development of upper-tropospheric wind over the Western Hemisphere in association with MJO convective initiation. J. Atmos. Sci., 72, 31383160, https://doi.org/10.1175/JAS-D-14-0293.1.

    • Search Google Scholar
    • Export Citation
  • Salby, M. L., and H. H. Hendon, 1994: Intraseasonal behavior of clouds, temperature, and motion in the tropics. J. Atmos. Sci., 51, 22072224, https://doi.org/10.1175/1520-0469(1994)051%3C2207:IBOCTA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shaaban, A. A., and P. E. Roundy, 2017: OLR perspective on the Indian Ocean dipole with application to East African precipitation. Quart. J. Roy. Meteor. Soc., 143, 18281843, https://doi.org/10.1002/qj.3045.

    • Search Google Scholar
    • Export Citation
  • Shaaban, A. A., and P. E. Roundy, 2021: Upward and downward atmospheric Kelvin waves over the Indian Ocean. Quart. J. Roy. Meteor. Soc., 147, 31543179, https://doi.org/10.1002/qj.4122.

    • Search Google Scholar
    • Export Citation
  • Sobel, A., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 42764291, https://doi.org/10.1175/JAS-D-14-0052.1.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 36503665, https://doi.org/10.1175/1520-0469(2001)058%3C3650:TWTGAA%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., 2003: Propagation and the vertical structure of the Madden–Julian oscillation. Mon. Wea. Rev., 131, 30183037, https://doi.org/10.1175/1520-0493(2003)131%3C3018:PATVSO%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stachnik, J. P., D. E. Waliser, and A. J. Majda, 2015: Precursor environmental conditions associated with the termination of Madden–Julian oscillation events. J. Atmos. Sci., 72, 19081931, https://doi.org/10.1175/JAS-D-14-0254.1.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., 2013: MJO initiation in the real-time multivariate MJO index. J. Climate, 26, 11301151, https://doi.org/10.1175/JCLI-D-12-00074.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J. Climate, 24, 49074924, https://doi.org/10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 4361, https://doi.org/10.1007/BF01026810.

    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, E. Maloney, and B. Wang, 2017: Fundamental causes of propagating and nonpropagating MJOs in MJOTF/GASS models. J. Climate, 30, 37433769, https://doi.org/10.1175/JCLI-D-16-0765.1.

    • Search Google Scholar
    • Export Citation
  • Wang, L., T. Li, and T. Nasuno, 2018: Impact of Rossby and Kelvin wave components on MJO eastward propagation. J. Climate, 31, 69136931, https://doi.org/10.1175/JCLI-D-17-0749.1.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, https://doi.org/10.1175/1520-0493(2004)132%3C1917:AARMMI%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Elsevier, 676 pp.

  • Yule, G. U., 1907: On the theory of correlation for any number of variables, treated by a new system of notation. Proc. Roy. Soc. London, 79A, 182193, https://doi.org/10.1098/rspa.1907.0028.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian Oscillation. Rev. Geophys., 43, RG2003, https://doi.org/10.1029/2004RG000158.

  • Zhang, C., and S. P. Anderson, 2003: Sensitivity of intraseasonal perturbations in SST to the structure of the MJO. J. Atmos. Sci., 60, 21962207, https://doi.org/10.1175/1520-0469(2003)060%3C2196:SOIPIS%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 31693180, https://doi.org/10.1175/1520-0442(2004)017%3C3169:SITMO%3E2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291307, https://doi.org/10.1175/JCLI-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., and H. H. Hendon, 2015: Role of large-scale moisture advection for simulation of the MJO with increased entrainment. Quart. J. Roy. Meteor. Soc., 141, 21272136, https://doi.org/10.1002/qj.2510.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 346 346 251
Full Text Views 95 95 68
PDF Downloads 91 91 61