Quantifying Scavenging Efficiencies of Different Aerosol Species and Size-Resolved Volume Concentrations in Tropical Convective Clouds over the West Pacific

Miguel Ricardo A. Hilario Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Miguel Ricardo A. Hilario in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-3649-3428
,
Mary Barth Atmospheric Chemistry Observations and Modeling Laboratory, NSF National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mary Barth in
Current site
Google Scholar
PubMed
Close
,
Ryan Bennett Bay Area Environmental Research Institute, Moffett Field, California

Search for other papers by Ryan Bennett in
Current site
Google Scholar
PubMed
Close
,
Ewan Crosbie NASA Langley Research Center, Hampton, Virginia
Analytical Mechanics Associates, Inc., Hampton, Virginia

Search for other papers by Ewan Crosbie in
Current site
Google Scholar
PubMed
Close
,
Joshua P. DiGangi NASA Langley Research Center, Hampton, Virginia

Search for other papers by Joshua P. DiGangi in
Current site
Google Scholar
PubMed
Close
,
Glenn S. Diskin NASA Langley Research Center, Hampton, Virginia

Search for other papers by Glenn S. Diskin in
Current site
Google Scholar
PubMed
Close
,
Genevieve Rose Lorenzo Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
Manila Observatory, Quezon City, Philippines

Search for other papers by Genevieve Rose Lorenzo in
Current site
Google Scholar
PubMed
Close
,
Steven Rutledge Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven Rutledge in
Current site
Google Scholar
PubMed
Close
,
Melissa Yang Martin NASA Langley Research Center, Hampton, Virginia

Search for other papers by Melissa Yang Martin in
Current site
Google Scholar
PubMed
Close
,
Luke Ziemba NASA Langley Research Center, Hampton, Virginia

Search for other papers by Luke Ziemba in
Current site
Google Scholar
PubMed
Close
, and
Armin Sorooshian Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
Department of Chemical and Environmental Engineering, The University of Arizona, Tucson, Arizona

Search for other papers by Armin Sorooshian in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2243-2264
Restricted access

Abstract

In-cloud aerosol scavenging remains a large source of model uncertainty, affecting capabilities to capture the aerosol lifetime and impacts on air quality and climate. While past work quantified aerosol scavenging efficiencies (SEs) in midlatitude mixed-phase deep convection, SEs are less well known for shallower convection. We used aircraft data over the tropical west Pacific to calculate SEs for three marine cumuli of different top heights (3–7 km MSL) using a simple entrainment model and measurements of the cloud outflow and nearby clear air. Across cases, efficient scavenging was observed for sulfate (>86%) and black carbon (70%–80%), while organic aerosols (53%–60%) and nitrate (61.5%) were moderately scavenged. Ammonium had a wide SE range (53%–87%). SEs of aerosol volume concentration showed near-total removal of aerosols with diameters greater than 100 nm (>92%) and inefficient removal for aerosols with diameters less than 100 nm (30%–50%), associated with the preferential activation and removal of larger particles. Mass-based SEs did not differ substantially between tropical cumuli and midlatitude deep convection, attributed to the negligible mass activated at higher supersaturations. The efficient scavenging of black carbon (BC) can be explained by an enhanced hygroscopic fraction of BC based on model results from the Community Earth System Model, version 2 (CESM2), Community Atmosphere Model with Chemistry, suggesting the internal mixing of BC with more soluble species during long-range transport through the marine atmosphere. The estimates of BC SEs provide direct evidence of substantial BC removal in convection as inferred by previous work and should motivate improvements in chemical transport models.

Significance Statement

The scavenging (removal) of aerosols is critical for estimating the lifetime of aerosols and their impact on air quality and climate; however, scavenging efficiency remains uncertain in global models especially for shallow convection. To address this uncertainty, we calculated aerosol scavenging efficiencies in tropical marine cumuli for different aerosol species, including sulfate and black carbon. We find that scavenging efficiencies depend on aerosol composition, size, and to a lesser extent, cloud-top height. The efficient removal of black carbon is explained by high hygroscopic fractions based on a model, related to the mixing of black carbon with more soluble species during transport. The reported scavenging efficiencies can be implemented into chemical transport models to improve model estimates of aerosol removal.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Armin Sorooshian, armin@arizona.edu

Abstract

In-cloud aerosol scavenging remains a large source of model uncertainty, affecting capabilities to capture the aerosol lifetime and impacts on air quality and climate. While past work quantified aerosol scavenging efficiencies (SEs) in midlatitude mixed-phase deep convection, SEs are less well known for shallower convection. We used aircraft data over the tropical west Pacific to calculate SEs for three marine cumuli of different top heights (3–7 km MSL) using a simple entrainment model and measurements of the cloud outflow and nearby clear air. Across cases, efficient scavenging was observed for sulfate (>86%) and black carbon (70%–80%), while organic aerosols (53%–60%) and nitrate (61.5%) were moderately scavenged. Ammonium had a wide SE range (53%–87%). SEs of aerosol volume concentration showed near-total removal of aerosols with diameters greater than 100 nm (>92%) and inefficient removal for aerosols with diameters less than 100 nm (30%–50%), associated with the preferential activation and removal of larger particles. Mass-based SEs did not differ substantially between tropical cumuli and midlatitude deep convection, attributed to the negligible mass activated at higher supersaturations. The efficient scavenging of black carbon (BC) can be explained by an enhanced hygroscopic fraction of BC based on model results from the Community Earth System Model, version 2 (CESM2), Community Atmosphere Model with Chemistry, suggesting the internal mixing of BC with more soluble species during long-range transport through the marine atmosphere. The estimates of BC SEs provide direct evidence of substantial BC removal in convection as inferred by previous work and should motivate improvements in chemical transport models.

Significance Statement

The scavenging (removal) of aerosols is critical for estimating the lifetime of aerosols and their impact on air quality and climate; however, scavenging efficiency remains uncertain in global models especially for shallow convection. To address this uncertainty, we calculated aerosol scavenging efficiencies in tropical marine cumuli for different aerosol species, including sulfate and black carbon. We find that scavenging efficiencies depend on aerosol composition, size, and to a lesser extent, cloud-top height. The efficient removal of black carbon is explained by high hygroscopic fractions based on a model, related to the mixing of black carbon with more soluble species during transport. The reported scavenging efficiencies can be implemented into chemical transport models to improve model estimates of aerosol removal.

© 2025 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Armin Sorooshian, armin@arizona.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.9419 MB)
Save
  • Barth, M. C., S.-W. Kim, W. C. Skamarock, A. L. Stuart, K. E. Pickering, and L. E. Ott, 2007: Simulations of the redistribution of formaldehyde, formic acid, and peroxides in the 10 July 1996 Stratospheric-Tropospheric Experiment: Radiation, Aerosols, and Ozone deep convection storm. J. Geophys. Res., 112, D13310, https://doi.org/10.1029/2006JD008046.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and Coauthors, 2015: The Deep Convective Clouds and Chemistry (DC3) field campaign. Bull. Amer. Meteor. Soc., 96, 12811309, https://doi.org/10.1175/BAMS-D-13-00290.1.

    • Search Google Scholar
    • Export Citation
  • Barth, M. C., and Coauthors, 2016: Convective transport and scavenging of peroxides by thunderstorms observed over the central U.S. during DC3. J. Geophys. Res. Atmos., 121, 42724295, https://doi.org/10.1002/2015JD024570.

    • Search Google Scholar
    • Export Citation
  • Bela, M. M., and Coauthors, 2016: Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations. J. Geophys. Res. Atmos., 121, 42334257, https://doi.org/10.1002/2015JD024623.

    • Search Google Scholar
    • Export Citation
  • Bela, M. M., and Coauthors, 2018: Effects of scavenging, entrainment, and aqueous chemistry on peroxides and formaldehyde in deep convective outflow over the central and Southeast United States. J. Geophys. Res. Atmos., 123, 75947614, https://doi.org/10.1029/2018JD028271.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos., 118, 53805552, https://doi.org/10.1002/jgrd.50171.

    • Search Google Scholar
    • Export Citation
  • Canagaratna, M. R., and Coauthors, 2007: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev., 26, 185222, https://doi.org/10.1002/mas.20115.

    • Search Google Scholar
    • Export Citation
  • Carlton, A. G., A. E. Christiansen, M. M. Flesch, C. J. Hennigan, and N. Sareen, 2020: Multiphase atmospheric chemistry in liquid water: Impacts and controllability of organic aerosol. Acc. Chem. Res., 53, 17151723, https://doi.org/10.1021/acs.accounts.0c00301.

    • Search Google Scholar
    • Export Citation
  • Choi, Y., and Coauthors, 2020: Investigation of the wet removal rate of black carbon in East Asia: Validation of a below- and in-cloud wet removal scheme in FLEXible PARTicle (FLEXPART) model v10.4. Atmos. Chem. Phys., 20, 13 65513 670, https://doi.org/10.5194/acp-20-13655-2020.

    • Search Google Scholar
    • Export Citation
  • Choi, Y., and Coauthors, 2023: Empirical estimation of size-resolved scavenging coefficients derived from in-situ measurements at background sites in Korea during 2013–2020. Atmos. Res., 295, 106971, https://doi.org/10.1016/j.atmosres.2023.106971.

    • Search Google Scholar
    • Export Citation
  • Cohan, D. S., M. G. Schultz, D. J. Jacob, B. G. Heikes, and D. R. Blake, 1999: Convective injection and photochemical decay of peroxides in the tropical upper troposphere: Methyl iodide as a tracer of marine convection. J. Geophys. Res., 104, 57175724, https://doi.org/10.1029/98JD01963.

    • Search Google Scholar
    • Export Citation
  • Collett, J. L., Jr., P. Herckes, S. Youngster, and T. Lee, 2008: Processing of atmospheric organic matter by California radiation fogs. Atmos. Res., 87, 232241, https://doi.org/10.1016/j.atmosres.2007.11.005.

    • Search Google Scholar
    • Export Citation
  • Cozic, J., B. Verheggen, S. Mertes, P. Connolly, K. Bower, A. Petzold, U. Baltensperger, and E. Weingartner, 2007: Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch. Atmos. Chem. Phys., 7, 17971807, https://doi.org/10.5194/acp-7-1797-2007.

    • Search Google Scholar
    • Export Citation
  • Croft, B., U. Lohmann, R. V. Martin, P. Stier, S. Wurzler, J. Feichter, R. Posselt, and S. Ferrachat, 2009: Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys., 9, 46534675, https://doi.org/10.5194/acp-9-4653-2009.

    • Search Google Scholar
    • Export Citation
  • Crosbie, E., and Coauthors, 2022: Measurement report: Closure analysis of aerosol–cloud composition in tropical maritime warm convection. Atmos. Chem. Phys., 22, 13 26913 302, https://doi.org/10.5194/acp-22-13269-2022.

    • Search Google Scholar
    • Export Citation
  • Cuchiara, G. C., and Coauthors, 2020: Vertical transport, entrainment, and scavenging processes affecting trace gases in a modeled and observed SEAC4RS case study. J. Geophys. Res. Atmos., 125, e2019JD031957, https://doi.org/10.1029/2019JD031957.

    • Search Google Scholar
    • Export Citation
  • Cuchiara, G. C., and Coauthors, 2023: Effect of marine and land convection on wet scavenging of ozone precursors observed during a SEAC4RS case study. J. Geophys. Res. Atmos., 128, e2022JD037107, https://doi.org/10.1029/2022JD037107.

    • Search Google Scholar
    • Export Citation
  • Dawe, J. T., and P. H. Austin, 2013: Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES. Atmos. Chem. Phys., 13, 77957811, https://doi.org/10.5194/acp-13-7795-2013.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and A. Pier Siebesma, 2010: Analytical expressions for entrainment and detrainment in cumulus convection. Quart. J. Roy. Meteor. Soc., 136, 12161227, https://doi.org/10.1002/qj.640.

    • Search Google Scholar
    • Export Citation
  • de Rooy, W. C., and Coauthors, 2013: Entrainment and detrainment in cumulus convection: An overview. Quart. J. Roy. Meteor. Soc., 139 (670), 119, https://doi.org/10.1002/qj.1959.

    • Search Google Scholar
    • Export Citation
  • DeCarlo, P. F., and Coauthors, 2008: Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign. Atmos. Chem. Phys., 8, 40274048, https://doi.org/10.5194/acp-8-4027-2008.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., and J. Wu, 2010: The role of entrainment in the diurnal cycle of continental convection. J. Climate, 23, 27222738, https://doi.org/10.1175/2009JCLI3340.1.

    • Search Google Scholar
    • Export Citation
  • DiGangi, J. P., and Coauthors, 2021: Seasonal variability in local carbon dioxide biomass burning sources over central and eastern US using airborne in situ enhancement ratios. J. Geophys. Res. Atmos., 126, e2020JD034525, https://doi.org/10.1029/2020JD034525.

    • Search Google Scholar
    • Export Citation
  • Diskin, G. S., J. R. Podolske, G. W. Sachse, and T. A. Slate, 2002: Open-path airborne tunable diode laser hygrometer. Proc. SPIE, 4817, 196204, https://doi.org/10.1117/12.453736.

    • Search Google Scholar
    • Export Citation
  • Dlugi, R., 1989: Chemistry and deposition of soot particles in moist air and fog. Aerosol Sci. Technol., 10, 93105, https://doi.org/10.1080/02786828908959224.

    • Search Google Scholar
    • Export Citation
  • Dusek, U., and Coauthors, 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science, 312, 13751378, https://doi.org/10.1126/science.1125261.

    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. Tibshirani, 1986: Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci., 1, 5475, https://doi.org/10.1214/ss/1177013815.

    • Search Google Scholar
    • Export Citation
  • Eissner, J. M., D. B. Mechem, M. P. Jensen, and S. E. Giangrande, 2021: Factors governing cloud growth and entrainment rates in shallow cumulus and cumulus congestus during GoAmazon2014/5. J. Geophys. Res. Atmos., 126, e2021JD034722, https://doi.org/10.1029/2021JD034722.

    • Search Google Scholar
    • Export Citation
  • Ekman, A. M. L., C. Wang, J. Wilson, and J. Ström, 2004: Explicit simulations of aerosol physics in a cloud-resolving model: A sensitivity study based on an observed convective cloud. Atmos. Chem. Phys., 4, 773791, https://doi.org/10.5194/acp-4-773-2004.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. K., and Coauthors, 2020: The chemistry mechanism in the Community Earth System Model version 2 (CESM2). J. Adv. Model. Earth Syst., 12, e2019MS001882, https://doi.org/10.1029/2019MS001882.

    • Search Google Scholar
    • Export Citation
  • Engström, A., A. M. L. Ekman, R. Krejci, J. Ström, M. de Reus, and C. Wang, 2008: Observational and modelling evidence of tropical deep convective clouds as a source of mid-tropospheric accumulation mode aerosols. Geophys. Res. Lett., 35, L23813, https://doi.org/10.1029/2008GL035817.

    • Search Google Scholar
    • Export Citation
  • Fierce, L., N. Riemer, and T. C. Bond, 2017: Toward reduced representation of mixing state for simulating aerosol effects on climate. Bull. Amer. Meteor. Soc., 98, 971980, https://doi.org/10.1175/BAMS-D-16-0028.1.

    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J. W., 1973: Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition. J. Atmos. Sci., 30, 628634, https://doi.org/10.1175/1520-0469(1973)030<0628:DOTSSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., 1998: Interaction of aerosol particles and clouds. J. Atmos. Sci., 55, 879887, https://doi.org/10.1175/1520-0469(1998)055<0879:IOAPAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Flossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 583606, https://doi.org/10.1175/1520-0469(1985)042<0583:ATSOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2021: The Earth’s energy budget, climate feedbacks, and climate sensitivity. Climate Change 2021: The Physical Science Basis, V. Masson-Delmotte et al., Eds., Cambridge University Press, 923–1054, https://doi.org/10.1017/9781009157896.009.

  • Fried, A., and Coauthors, 2016: Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study. J. Geophys. Res. Atmos., 121, 74307460, https://doi.org/10.1002/2015JD024477.

    • Search Google Scholar
    • Export Citation
  • Froyd, K. D., and Coauthors, 2019: A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech., 12, 62096239, https://doi.org/10.5194/amt-12-6209-2019.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., L. Avey, P. I. Palmer, A. Stohl, J. A. Neuman, C. A. Brock, T. B. Ryerson, and J. S. Holloway, 2006: Quantifying wet scavenging processes in aircraft observations of nitric acid and cloud condensation nuclei. J. Geophys. Res., 111, D23S51, https://doi.org/10.1029/2006JD007416.

    • Search Google Scholar
    • Export Citation
  • Gerber, H. E., G. M. Frick, J. B. Jensen, and J. G. Hudson, 2008: Entrainment, mixing, and microphysics in trade-wind cumulus. J Meteor. Soc. Japan. Ser. II, 86A, 87–106, https://doi.org/10.2151/jmsj.86A.87.

    • Search Google Scholar
    • Export Citation
  • Gilardoni, S., and Coauthors, 2014: Fog scavenging of organic and inorganic aerosol in the Po Valley. Atmos. Chem. Phys., 14, 69676981, https://doi.org/10.5194/acp-14-6967-2014.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W., and H. Morrison, 2021: Supersaturation, buoyancy, and deep convection dynamics. Atmos. Chem. Phys., 21, 13 99714 018, https://doi.org/10.5194/acp-21-13997-2021.

    • Search Google Scholar
    • Export Citation
  • Gundel, L. A., W. H. Benner, and A. D. A. Hansen, 1994: Chemical composition of fog water and interstitial aerosol in Berkeley, California. Atmos. Environ., 28, 27152725, https://doi.org/10.1016/1352-2310(94)90443-X.

    • Search Google Scholar
    • Export Citation
  • Hansen, A. D. A., and T. Novakov, 1989: Real-time measurements of the size fractionation of ambient black carbon aerosols at elevated humidities. Aerosol Sci. Technol., 10, 106110, https://doi.org/10.1080/02786828908959225.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2010: A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett., 37, L08803, https://doi.org/10.1029/2010GL042737.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., P. V. Hobbs, and L. F. Radke, 1984: Measurements of the scavenging of sulfate and nitrate in clouds. Atmos. Environ., 18, 19391946, https://doi.org/10.1016/0004-6981(84)90371-8.

    • Search Google Scholar
    • Export Citation
  • Heimerl, K., and Coauthors, 2016: Vertical distribution of black carbon during DC3 and the influence of thunderstorms on the transport of biomass burning layers into the free troposphere. 2016 AGU Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A41C-0051, https://agu.confex.com/agu/fm16/meetingapp.cgi/Paper/181277.

  • Heintzenberg, J., D. C. Covert, and R. V. Dingenen, 2000: Size distribution and chemical composition of marine aerosols: A compilation and review. Tellus, 52B, 11041122, https://doi.org/10.3402/tellusb.v52i4.17090.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., A. Bansemer, G. Heymsfield, and A. O. Fierro, 2009: Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°. J. Atmos. Sci., 66, 35303562, https://doi.org/10.1175/2009JAS3107.1.

    • Search Google Scholar
    • Export Citation
  • Hicks, B. B., 2005: A climatology of wet deposition scavenging ratios for the United States. Atmos. Environ., 39, 15851596, https://doi.org/10.1016/j.atmosenv.2004.10.039.

    • Search Google Scholar
    • Export Citation
  • Hilario, M. R. A., and Coauthors, 2021: Measurement report: Long-range transport patterns into the tropical northwest Pacific during the CAMP2Ex aircraft campaign: Chemical composition, size distributions, and the impact of convection. Atmos. Chem. Phys., 21, 37773802, https://doi.org/10.5194/acp-21-3777-2021.

    • Search Google Scholar
    • Export Citation
  • Hilario, M. R. A., and Coauthors, 2024: Assessing potential indicators of aerosol wet scavenging during long-range transport. Atmos. Meas. Tech., 17, 3755, https://doi.org/10.5194/amt-17-37-2024.

    • Search Google Scholar
    • Export Citation
  • Hitzenberger, R., A. Berner, H. Giebl, K. Drobesch, A. Kasper-Giebl, M. Loeflund, H. Urban, and H. Puxbaum, 2001: Black carbon (BC) in alpine aerosols and cloud water—Concentrations and scavenging efficiencies. Atmos. Environ., 35, 51355141, https://doi.org/10.1016/S1352-2310(01)00312-0.

    • Search Google Scholar
    • Export Citation
  • Hodzic, A., P. S. Kasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, and R. J. Park, 2016: Rethinking the global secondary organic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys., 16, 79177941, https://doi.org/10.5194/acp-16-7917-2016.

    • Search Google Scholar
    • Export Citation
  • Hoose, C., U. Lohmann, P. Stier, B. Verheggen, and E. Weingartner, 2008: Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations. J. Geophys. Res., 113, D07210, https://doi.org/10.1029/2007JD009251.

    • Search Google Scholar
    • Export Citation
  • Hoppel, W. A., G. M. Frick, and J. W. Fitzgerald, 1996: Deducing droplet concentration and supersaturation in marine boundary layer clouds from surface aerosol measurements. J. Geophys. Res., 101, 26 55326 565, https://doi.org/10.1029/96JD02243.

    • Search Google Scholar
    • Export Citation
  • Hou, P., S. Wu, J. L. McCarty, and Y. Gao, 2018: Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmos. Chem. Phys., 18, 81738182, https://doi.org/10.5194/acp-18-8173-2018.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and R. J. Charlson, 1984: On the efficiency of nucleation scavenging. Tellus, 36B, 367375, https://doi.org/10.1111/j.1600-0889.1984.tb00255.x.

    • Search Google Scholar
    • Export Citation
  • Karydis, V. A., A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld, 2016: Effects of mineral dust on global atmospheric nitrate concentrations. Atmos. Chem. Phys., 16, 14911509, https://doi.org/10.5194/acp-16-1491-2016.

    • Search Google Scholar
    • Export Citation
  • Kasper-Giebl, A., M. F. Kalina, and H. Puxbaum, 1999: Scavenging ratios for sulfate, ammonium and nitrate determined at Mt. Sonnblick (3106m a.s.l.). Atmos. Environ., 33, 895906, https://doi.org/10.1016/S1352-2310(98)00279-9.

    • Search Google Scholar
    • Export Citation
  • Kasper-Giebl, A., A. Koch, R. Hitzenberger, and H. Puxbaum, 2000: Scavenging efficiency of ‘aerosol carbon’ and sulfate in supercooled clouds at Mt. Sonnblick (3106 m a.s.l., Austria). J. Atmos. Chem., 35, 3346, https://doi.org/10.1023/A:1006250508562.

    • Search Google Scholar
    • Export Citation
  • Kaul, D. S., T. Gupta, S. N. Tripathi, V. Tare, and J. L. Collett Jr., 2011: Secondary organic aerosol: A comparison between foggy and nonfoggy days. Environ. Sci. Technol., 45, 73077313, https://doi.org/10.1021/es201081d.

    • Search Google Scholar
    • Export Citation
  • Kipling, Z., P. Stier, J. P. Schwarz, A. E. Perring, J. R. Spackman, G. W. Mann, C. E. Johnson, and P. J. Telford, 2013: Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon. Atmos. Chem. Phys., 13, 59695986, https://doi.org/10.5194/acp-13-5969-2013.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., R. Bruintjes, S. Woods, and C. Gurganus, 2022: Coalescence and secondary ice development in cumulus congestus clouds. J. Atmos. Sci., 79, 953972, https://doi.org/10.1175/JAS-D-21-0188.1.

    • Search Google Scholar
    • Export Citation
  • Leung, G. R., S. M. Saleeby, G. A. Sokolowsky, S. W. Freeman, and S. C. van den Heever, 2023: Aerosol–cloud impacts on aerosol detrainment and rainout in shallow maritime tropical clouds. Atmos. Chem. Phys., 23, 52635278, https://doi.org/10.5194/acp-23-5263-2023.

    • Search Google Scholar
    • Export Citation
  • Li, J., J. Huang, K. Stamnes, T. Wang, Q. Lv, and H. Jin, 2015: A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys., 15, 519536, https://doi.org/10.5194/acp-15-519-2015.

    • Search Google Scholar
    • Export Citation
  • Li, K., and Coauthors, 2018: Temporal variations in the hygroscopicity and mixing state of black carbon aerosols in a polluted megacity area. Atmos. Chem. Phys., 18, 15 20115 218, https://doi.org/10.5194/acp-18-15201-2018.

    • Search Google Scholar
    • Export Citation
  • Li, W. J., and L. Y. Shao, 2009: Observation of nitrate coatings on atmospheric mineral dust particles. Atmos. Chem. Phys., 9, 18631871, https://doi.org/10.5194/acp-9-1863-2009.

    • Search Google Scholar
    • Export Citation
  • Li, Y., K. E. Pickering, M. C. Barth, M. M. Bela, K. A. Cummings, and D. J. Allen, 2019: Wet scavenging in WRF-Chem simulations of parameterized convection for a severe storm during the DC3 field campaign. J. Geophys. Res. Atmos., 124, 74137428, https://doi.org/10.1029/2019JD030484.

    • Search Google Scholar
    • Export Citation
  • Liu, D., and Coauthors, 2013: Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos. Chem. Phys., 13, 20152029, https://doi.org/10.5194/acp-13-2015-2013.

    • Search Google Scholar
    • Export Citation
  • Liu, M., and H. Matsui, 2021: Improved simulations of global black carbon distributions by modifying wet scavenging processes in convective and mixed-phase clouds. J. Geophys. Res. Atmos., 126, e2020JD033890, https://doi.org/10.1029/2020JD033890.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and J. Wang, 2010: How important is organic aerosol hygroscopicity to aerosol indirect forcing? Environ. Res. Lett., 5, 044010, https://doi.org/10.1088/1748-9326/5/4/044010.

    • Search Google Scholar
    • Export Citation
  • Liu, X., P.-L. Ma, H. Wang, S. Tilmes, B. Singh, R. C. Easter, S. J. Ghan, and P. J. Rasch, 2016: Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev., 9, 505522, https://doi.org/10.5194/gmd-9-505-2016.